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Abstract In the realm of 3D-2D dimensional reduction problems, we prove that, up
to an extraction, it is possible to decompose a sequence (u, ), whose scaled gradients

(Vaun,g%an) are bounded in L*(w x (—1,1),R**?) for a suitable Orlicz func-
tion ®, as wu,=v,+2z,, such that v, describes the oscillations,
((D(’Vavnéan
concentration effects, converges to zero in measure. In particular, we extend to the

Orlicz—Sobolev setting the results contained in Bocea and Fonseca, (ESAIM:
COCYV 7:443-470, 2002) and Braides and Zeppieri (Calc Var 29:231-238, 2007).

)), is equi-integrable and the remainder z,, accounting for
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2 P. A. Kozarzewski, E. Zappale

1 Introduction

In the study of thin structures, i.e. when one or more dimensions are much smaller
than the others, say of order e< <1, rigorous analysis via dimensional reduction
proves to be a useful tool to deduce properties of thin domains starting from thicker
models. In this analysis one deals with sequences of functions defined on cylindrical
sets with some thin (¢ sized) dimension. In the 3D setting, thin films are modelled as
 x (—e¢,&) with @ C R? a bounded open set. In order to perform an asymptotic
analysis as ¢ — 0, with the aim of deducing a theory settled in w, functions are
usually rescaled to an e-independent reference configuration, so that a new sequence
(u;) is constructed, satisfying, in the standard Sobolev setting, some ‘degenerate’
bounds of the form

: 1
/ <|V“u,;|p+—|V3u,;|p)dx§ C< + oo, (1)
wox(=1,1) &

if the sequence of unscaled gradients (Vw,) satisfied some corresponding L? bound
on the unscaled domain w x (—¢, ¢).

Above and in the sequel V, represents the gradient with respect to the unscaled
coordinates (denoted by x,) and V3 represents the gradient with respect to the thin
coordinate direction denoted by x3. In particular, Q := o x (—1,1) = {(xy,x3) :
(x4, 8x3) € 0 X (—¢,€)} and u,(xy, x3) = we(xy, £x3).

Bocea and Fonseca in [3] (see also Braides and Zeppieri in [4] for any
dimension) proved an equi-integrability Lemma for scaled gradients satisfying a
bound as (1). Indeed they generalized the Fonseca et al.’s result (see [7, Lemma
1.2], in turn refining the results in [1]) which allows to substitute a sequence (u,),
whose gradients (Vu,) are bounded in 17, by a sequence (v,) with (|Vv,|’) equi-
integrable, such that the two sequences are equal except on a set of vanishing
measure. The purpose of such a result is due to the fact that when applying the direct
methods of the Calculus of Variations, or some I'-convergence argument, it is very
convenient to replace a given sequence with one having better regularity and
integrability properties.

In this note we extend [3, Theorem 1.1, Corollary 1.2] to the Orlicz—Sobolev
setting (see Sect. 2 for details and properties about Orlicz spaces L® and Orlicz—
Sobolev ones W'®)., Our main motivation is to provide new tools, namely the
Lipschitz type approximation for scaled gradients, to the asymptotic analysis of thin
structures whose stored energy can be modelled in terms of Orlicz—Sobolev
functions. Indeed a larger class of materials can be considered, replacing standard
coercivity and growth condtions (i.e. of the type |- |) for the energy density, by
convex functions [satisfying suitable properties, as (5) and (6)]. We refer to the
recent works [18, 19] aimed to describe thin structures and their bending
phenomena, and to the forthcoming paper [16], where optimal design questions
are addressed in the same spirit of [5, 6]. We believe that our result can have further
applications like those to fluid mechanics and multiscale problems (we refer to [21],
where homogenization of integral functionals was treated, in a very similar setting
to ours).
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Orlicz equi-integrability 3

Via Young measures techniques, we prove

Theorem 1 Let o C R* be a bounded open set with Lipschitz boundary and
Q:=wx(=1,1). Let ® : [0,+00) — [0,+00) be an Orlicz function satisfying (5)
and (6). Let (u,) C W'®(Q; R®). Assume that (e,) is a sequence of numbers
converging to 0, such that

sup/(®(|vxun,;v3un|))dx —C<+oo 2)
n Q n

Then there exists a (non-relabelled) subsequence (u,) and a sequence (v,) C
W (Q; R®) such that

(i) sequence (D(|V,v,, LV3v,|)) is equi-integrable,

(i) v, — ug in WHP(Q; R3), where uq is the weak limit of (u,) in W"®(Q; R?),
(i) |{x€Q:u, #v,0rVu, # Vv,}| — 0, as n — +o0o,
(V) Vujwx(—1,1) = Uo-

We stress that the above result holds for any sequence of scaled gradients
appearing in any Nd-Kd dimensional reduction problem, besides the proof is
presented for N = 3 and K = 2.

Having in mind the equilibrium problems related to membranes, where the total
energy of the thin film under a deformation w; :  x (—é&,¢) — R? is given by

En)i= [ wwODdy = [ ) wdy
wx(—¢&,) WX (—¢,)
with £ € LY (0 x (—¢,¢), R?) an appropriate dead loading body force density (we
refer to [18] for the asymptotic analysis of the above energy), it is important to
prove the existence of an ‘attaining’ sequence for the limit density, which is ®-equi-
integrable. Indeed the following result holds.

Theorem 2 Let Q and ® be as in Theorem 1. Let ug € W'®(w, R) be an affine
mapping with gradient &, € R>? and let W : R¥3 — R be a continuous function
satisfying

BO(JE]) — c <W(E) < FB(|¢]) + C  foreveryé € RS, (3)

for suitable constant 0<B<f, ¢,C > 0.
Given any sequence (&,) of positive real numbers converging to zero, there exist
a subsequence (not relabelled) of (ey), and a sequence of functions (u,) C
WL (Q, R®) such that
M tim dy fo W(attn, £ Vst )dx = OW(&),  where  W(&) = min, g
n—-—+00 n

W(&o|z) and QW denotes the quasiconvex envelope of W, namely
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4 P. A. Kozarzewski, E. Zappale

owien =t o [ Wit Vaotn @

PEW, ™ (Q),R?)

for any cube Q) C w,
(i) lm {|u, —uol| 0 0p5) = 0,
(1) Unjowx(—1,1) = Uo-
@) (| Voatn, £ Viuy

) is equi-integrable.

It is worth to observe that such a result can be seen as a counterpart of the
characterization of the Young measures generated by scaled gradients in the Orlicz—
Sobolev setting. Indeed formula (i) is entirely analogous to [14, formula before
(1.16)].

The proof of Theorem 1 develops first by proving a Decomposition Lemma for
standard gradients (see Theorem 4) which relies on properties of maximal functions,
and exploits the Fundamental Theorem of Young measures (see Theorem 3). Then
the proof of Theorem 1 follows as a consequence making use of the fine
homogenization technique introduced in [4]. These are the subject of Sect. 3, while
all the preliminary results, together with properties of Hardy maximal operator are
contained in Sect. 2.

2 Notation and preliminaries

We will use the following notation:

— |Al denotes the Lebesgue measure of a set A in RN, N >2, and it will be clear
from the context;

— the symbol dx will also be used to denote integration with respect to the
Lebesgue measure LN ,N>3;

— the symbol dx, will be used to denote integration with respect to the Lebesgue
measure £

— the symbol V,u denotes the derivatives with respect to x, := (x1,x,) of a given
field u;

— C represents a generic positive constant that may change from line to line;

— amatrix £ € R¥3, will be often written as (&,, &3) where ¢, stands for the first
two columns and 3 represents the third;

— the Euclidean norm of a vector or of a matrix will be described as | - | and it will
be clear from the context;

— asequence (f,) is said to be ®-equi-integrable if the sequence (®(|f,|)) is equi-
integrable.

We say that ®:[0,+00) — [0,+00) is an Orlicz function whenever it is
continuous, strictly increasing, convex, vanishes only at 0 and lim,_o- ®(¢)/r =

0; lim,_, y o @(¢)/t = +o00. This statement is equivalent to demanding that ®(r) =
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Orlicz equi-integrability 5

fé ¢ (s)ds for some right-continuous, non-decreasing ¢ s.t. ¢(r) =0 <= 1 =0 and
lim, 4 ¢(2) = +o0.
We say that @ satisfies A, (denoted by @ € A,) condition whenever

there exist C > 0 and ¢ > £ such that ®(2¢) < CD(¢) for all ¢ > 1. (5)

Orlicz functions @ possess the complementary Orlicz function ¥(s) := ®*(s),
where the latter denotes the standard Fenchel’s conjugate of @, i.e.

Y(s) :=sup{st — ®(r)}, s>0,

t>0

and, it results that ¥(s) = f; ¢~ (t)dt, where ¢~ stands for right inverse function
of ¢.

Clearly ¥* = (0*)* = ®.

If ¥ € A, then (see [17, Theorem 4.2])

there exist C > 0 and 7, >0 such that ®(¢) <1/(2C) ®(Cr) for any ¢t > t5. (6)

Given two Orlicz functions ® and @', ® dominated @' near infinity (®' < ® or
® = @ in symbols) if there exists C > 1 and #, > 0 such that @'(¢) < ®(Ct) for all
t> 1.

For an arbitrary set of positive Lebesgue measure £ C R" we define the Orlicz
class Ly (E) of functions u on E as functions satisfying inequality

/E(I>(|u|)dx< oo

In general the class Lo(E) is not a linear space, and the Orlicz space L®(E) is

defined as the linear hull of Ly (E). It is easy to check that (see [17, Theorem 8.2])

Orlicz class Lo (E) coincides with its Orlicz space L®(E) if and only if ® € A,.
Orlicz spaces are equipped with the Luxemburg norm, namely

ol = inf, [ @l < 1 ™)

and are complete (see [17, Theorems 9.2 and 9.5]).
The following properties hold.

Lemma 1 Let ® be an Orlicz function satisfying the A, condition (i.e. (5)) and let
E be a bounded open set in R". Then

(i) CX(E) is dense in L®(E) [10, Theorem 1];
(i) L®(E) is separable [17, point 4 at page 85] and it is reflexive when ®
satisfies (6) [17, Theorem 14.2];
(i)  the dual of L®(E) is identified with LY (E), (¥ = ®*) and the dual
norm on LY (E) is equivalent to || - ||+ [17, Theorem 14.2];
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6 P. A. Kozarzewski, E. Zappale

(iv)  given u € L°(E) and v € LY (E), then uv € L'(E) and the following
generalized Holder inequality holds [17, Theorem 9.3 and formula

(9.24)]
’ / uvdx
E

(v)  for every v € L®(E) the linear functional 1, on LY (E) defined as
I(u) := / u(x)v(x)dx
E

belongs to the dual of L¥(E) with ||v||;e < Lol ey < 2Ivllo (17,
Theorem 9.5, formula 9.24];

(vi)  given ® and ®, the continuous embedding L*(E)—L®(E) holds iff
® > @ [17, Theorem 8.1];

(vii)  in view of (vi) L*(E)—L"(E)=Ll .(E)—D'(E);

(viii)  the product of d identical copies of L*(E), (L*(E)) := L*(E) x ... x
L2(E) endowed with the norm Hv||(Ld,(E>)d = Zle Vil o) is an

< 4u

ollvllpes

Orlicz space (i.e. the norm is equivalent to the L*(UYE) norm, where LI
stays for sum of disjoint copies of the set).

Sobolev—Orlicz spaces W!®(E) are defined as follows
W'(E) .= {u e D'(E) : u € L°(E), Vu € (L*(E))"}
endowed with the norm

el lwrog) = llull o gy + Vul| o)y

thus they are Banach spaces.

The Sobolev—Orlicz space W'®(E;R?), d € N is defined as the Banach space of
R valued functions u € L®(E;R?)  with distributional ~ derivative
Vu € L®(E; R¥*?), equipped with the norm

||”||W'-¢(E;Rd) = H””L‘D(E;Rd) + ||v”||L“’(E;RNX‘1)7

where the meaning of the norm || - [[;0(zr is easily understood from (viii) in

Lemma 1. On the other hand, all the other properties in Lemma 1 extend with
obvious meaning to the vectorial setting.
If E has Lipschitz boundary, then the embedding

WH(E;RY)—L®(E; RY) (8)
is compact (see [2] and [9, Theorems 2.2 and Proposition 2.1]).
For Sobolev—Orlicz space W!'®(E), where E has a Lipschitz boundary and

® € A,, there exists a linear continuous trace operator Tr : W'®(E) — L?(3E) [11,
Theorem 3.13].
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Orlicz equi-integrability 7

Let M be a (centred) Hardy maximal operator, i.e. for any f € L}, (E) N L*(E)
let

Mr) = sup ]! [ pola

The following result will be exploited in the sequel.

Proposition 1 (Weak estimate on Hardy’s operator) Let ® be an Orlicz function
satisfying (5) and (6). For any f € L*(E) there exists a constant C = C(E, (D) such
that

{Mf > 1)) < % / o(|f|)dx, 9)

for every t > 0.

Proof We start with standard Chebyshev inequality

M —
HMSf > t}] /{Mf>t}dx<f D(MS)D(1)dx,

{Mf >1}

where we use the fact that Orlicz function @ is increasing and ®(MY) is integrable.
This latter property, in turn, relying on the integrability of ®(|f]), (5) and result the
continuity of Hardy’s operator in [8]. Assuming that @ satisfies (5), (6), [12, The-
orem 1] (with applied weight w = y ¢~ note that condition (2) is obviously
satisfied) shows that there exists a constant C > 0 such that

/ C
Mf > P(MSF)D(1)dx < _/
Mf > @(MS)D(t) D(1) Jmr > o,

for every ¢ > 0. U

It is worth to observe that the result holds with the same proof in the vectorial
case.

We quote the Fundamental Theorem on Young measures, which will be invoked
in the proof of our main results, for more details we refer to [20] (and regarding
Young measures generated by gradients to [13, 15]).

Theorem 3 Let E C RY be a measurable set of finite measure and let (z,) be a
sequence of measurable functions, z,, : E — R™. Then there exists a subsequence
(zn,) and a weak * measurable map v : E — M(R™) such that the following hold:

@ v, >0, HVXHM(RM):f v <1 Jor a.e. x € E;
jm =
(i) one has (i') ||vs|| sy for a.e. x € E if and only if

. .
R sup {lzn | = R} =0

@ Springer



8 P. A. Kozarzewski, E. Zappale

(i) if K CR" is a compact subset and dist(z,,K) — 0 in measure, then
suppvy C K for a.e. x € E;

(iv)  if (') holds, then in (iii) one may replace ’‘f* with ’‘if and only if’;

) iff:ExR" — R is a normal integrand, bounded from below, then

lim inf /E £, 2, (x))dx > /E Rmf(x,y)dvx(y)dx

n—+o00

(vi) if (") holds and if f : E x R™ — R is Carathéodory and bounded from
below, then

tim [ f(zn (e = [ [ o)

n—-+400

if and only if (f(x,z,,(x))) is equi-integrable. In this case

F50) = [ x3)dn()int ! (E).

The map v : E — M(R™) is called the Young measure generated by (z,,).

3 Proofs of Theorems 1 and 2

This section is devoted to the proof of our main result.
We start by proving a Lemma which generalizes [20, Lemma 8.13] to the Orlicz
setting.

Lemma 2 Let ® be an Orlicz function satisfying (5) and (6). Let E C RN be a
Lebesgue measurable set of finite measure and let (u,) be a uniformly bounded
sequence in L®(E;R™). For any r > 0 define the standard truncature operators
7,:R— Ras

t  whenever|t| <r,

=< t
(1) r— otherwise. (10)

/7

Then there exist a (non-relabelled) subsequence (u,) and an increasing sequence of
positive numbers r, — 400 such that t,, o u, are ®O-equi-integrable and the mea-
sure |[{x € E: 1, ou, # u,}| — 0.

Proof By (i) in Theorem 3, we may assume that (u,,) generates the Young measure
vy and (iii) therein guarantees that

/E/ O(|z])dvi(z)dx < + oc.

So we have
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Orlicz equi-integrability 9

lim lim/ ®(|t, 0 up|)dx = lim // (|7 (2)])dva(z dx—// D(|z])dv,(z)dx.
r—+00 n—0o00 E r—+o00 m m

where the first equality relies on (vi) of Theorem 3, and the second one on Lebesgue
Monotone Convergence theorem. Take 7, such that

lim <D(|r,“oun|)dx:// O(|z])dvy(z)dx
n—+oo Jp EJR"

As r, — +oo and (u,) is bounded, one has

{x € E: 1, ou, #u,}| — 0.

Thus, we can conclude that (t,, o u,) generates the same Young measure as (u,)
(see [20, Corollary 8.7]).
Finally (vi) in Theorem 3 ensures ®-equi-integrability. O

Now we prove a Decomposition Lemma for gradients and then we extend this
result to scaled ones.

Theorem 4 Let E C RY be a bounded open set with Lipschitz boundary. Let ® be
an Orlicz function satisfying (5) and (6), and let (u,) C W"®(E; RY) be a sequence
of functions converging to uy weakly in W'(E; Rd). Then there exists a
subsequence (u,,) and a sequence (v;) C W' (RN: R?) such that (v) converges
10 uy weakly in WH®(E; R?), and

[{x € E : vi(x) # ug(x)orVuy(x) # Vi(x)}| — Oask — +o00
and (®(|Vw])) is equi-integrable.
Proof Since

sup ||un||W‘~°)(E;IR") <C
n

and by (5),

sgp{ J(@(u + <I><wn)>dx} <c,

it follows that from the continuity of the maximal operator [8, Theorem 2.1], and the
passage to an equivalent norm, that

sup{ [ o + |wn|>xE>dx} <c
n RV

where M ((|u,| + |Vun|)yg) is the maximal function of (|u,|+ |Vu,|)yg. By
Lemma 2, there exists an increasing sequence #, — +oo such that (®(|z,, o
(M((|un] + |Vun|)z£))])) is equi-integrable, where t,, is as in (10).

Define
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10 P. A. Kozarzewski, E. Zappale

A, ={x € E: IM((lun] + [Vun

V1) > ta}- (11)
By [20, Theorem 4.32], there exists (v,) C W'>°(R"; R™) such that
[Vallw1 < Cta,

where C depends on E and N, and such that v, = u, LY ae.on E \ A, and by (9)

C
Ay < —

In order to show that (®(|Vv,|)) is equi-integrable we observe that for £" a.e. x in
E\A,

/ O(|uy| + |V |)dx.
RN

[Vval = V| S M((lun| + [Vun|) 1) = 7, © M((lun| + [Vitn]) 1)
while if x € A, then

Vv, | <Ct, < C

T, © M((|tn| + [Vt |) 1)

It remains to prove the weak convergence of (v,) to ug in W'®(E; R?). To this end,
first we observe that (11) and (9) ensure

/(I)(\v,,| + | V| )dx = / O(|u,| + |Vu,,|)dx+/ O(|v,| + |Vvu|)dx
E

E\A, A,

g/ O (] + Vit ) + CD(1,) A

n

< c/ O[] + [Vitn|)dx.
E

Next the reflexivity of W'®(E; R?) under (5), (6) (see Lemma 1) and the Banach—
Alaoglu-Bourbaki theorem ensure that v, — vo in W'®(E; RY). Thus, since |{x €
E:v, # u,orVu, #v,}| — 0 as n — +oo we can conclude, via the compact
imbedding (see (8)) that vo = uy L£"-a.e. in E. O

Proof of Theorem 1  The proof of the claims (i) and (iii) follows line by line as in
[4, Theorem 3.1]. Namely, we define &, := u,(x1,x2,7* — 1) (so it is a shifted and
7

scaled version of u,, and it is defined on w x (0,2¢,)) and observe that

sup 8;1 / ®(|Viiy|)dx = C, whereCisexactlylikein(1.2).
i wx(0,2¢,)

J
We now extend i, by reflection to w x (—2¢,,2¢,) and then produce its periodic
extension to @ x (—1,1).

For such constructed sequence one can obtain the uniform bound of the norm in
W1 (@ x (—1,1)) as in [4, formula (3.6)]. Thus we apply Theorem 4 and obtain a
sequence (V,) with (VV,) ®-equi-integrable. The use of de la Vallée Poussin Cri-
terion (see [20, Theorem 2.29]) and an ingenious computation (see [4, formula
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Orlicz equi-integrability 11

(3.7)]) gives us the sequence (,) satisfying claim (i) and (iii).
Up to an extraction of a subsequence one may immediately deduce claim (ii).
To get (iv) we argue as in [3, Corollary 1.2]. We define sets

wj = {x € o : dist(x,0w) < 1/j} (12)

and cut-off functions 0; € C3°(w, [0, 1]), equal to 1 on \ w;, vanishing in a
neighbourhood of 0w, and such that |V0;| <Cj for some constant C. We set then
Vpj i= tp + 0;v,. Via compact imbedding (see (8)) and diagonal argument we may
find a sequence n(j) such that n(j) — +oo as j — 400 and

1
[[vagi)j — uoll ooy = 0 and vy ll o) <z

To obtain (iv), it suffices to define v; := v, ; ;. It remains to deduce (i)—(iii) for this
latter sequence. To prove (iii) we just observe that

|{X cQ: U; 75 VJ'OI'VMJ‘ 7é VV]'H
<H{x € Q:uj # viorVu; # Vv;}| + [{x € Q: v; # vjorVu; # Vv;}|,

and the claim follows from the control of the latter two sets. For (i), it suffices to
exploit the definition of #; and the ®-equi-integrability of v;, (see also [3, formula
(4.8)]). Up to the extraction of the subsequence we may know deduce (ii). U

Proof of Theorem 2 1t can be deduced from [3, Corollary 1.2]. We sketch the main
points for the readers’ convenience. First let us observe that from density of smooth
functions and properties of quasiconvex envelope and definition of W it can be
easily proven that

. 1 1 _
inf —/ W(Vau,—Viu)dx = QW(&). (13)
s’u‘?(ux(—l.l)zuo |Q| Q &

Now let us assume that o is a square (—c/2,¢/2)%. Let (wy, L,) be the infimizing
sequence of the left-hand side in (13). We may thus assume that, up to a reflection
and then a periodic extension, functions (w, — ug) are already defined on R* x
(—1,1). We define w,;(x) := &L, (w, — o) ((&Ls) 'z, x3) and observe that w,; —
0 and

1
lim lim —
n—00 j—00 |Q|

1 __
/ W (Vo + VaWnJ,(O—V3WnJ) = OW(&o)-
Q ’j

By a diagonal procedure and (8) we may choose j(n) such that (denoting wy, j(,) as wy
and &, as &,), limw, = 0 in L*(Q), and

1 1 _
lim — / W (¥ on, — Vi, )dx = QW (&).
Q[ Ja

n—o00 &n

The latter equality together with (2) gives us bound on the norm of w, in
W (Q; R*). Up to an extraction of the subsequence (not relabelled) we may still
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12 P. A. Kozarzewski, E. Zappale

assume that w,, — 0.

Applying Theorem 1 we obtain a sequence (v,) satisfying (ii)—(iv). (i) follows
from triangle inequality, ®-equi-integrability of (v,), point (iii) and the fact that
|wj| — 0 (see (12)).

To generalize the result to  with Lipschitz boundary we refer to the second step
of the proof of [3, Corollary 1.2]. O
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