1,976 research outputs found

    Radiative contribution to neutrino masses and mixing in μν\mu\nuSSM

    Full text link
    In an extension of the minimal supersymmetric standard model (popularly known as the μν\mu\nuSSM), three right handed neutrino superfields are introduced to solve the μ\mu-problem and to accommodate the non-vanishing neutrino masses and mixing. Neutrino masses at the tree level are generated through RR-parity violation and seesaw mechanism. We have analyzed the full effect of one-loop contributions to the neutrino mass matrix. We show that the current three flavour global neutrino data can be accommodated in the μν\mu\nuSSM, for both the tree level and one-loop corrected analyses. We find that it is relatively easier to accommodate the normal hierarchical mass pattern compared to the inverted hierarchical or quasi-degenerate case, when one-loop corrections are included.Comment: 51 pages, 14 figures (58 .eps files), expanded introduction, other minor changes, references adde

    Cytokinesis in bloodstream stage Trypanosoma brucei requires a family of katanins and spastin

    Get PDF
    Microtubule severing enzymes regulate microtubule dynamics in a wide range of organisms and are implicated in important cell cycle processes such as mitotic spindle assembly and disassembly, chromosome movement and cytokinesis. Here we explore the function of several microtubule severing enzyme homologues, the katanins (KAT80, KAT60a, KAT60b and KAT60c), spastin (SPA) and fidgetin (FID) in the bloodstream stage of the African trypanosome parasite, Trypanosoma brucei. The trypanosome cytoskeleton is microtubule based and remains assembled throughout the cell cycle, necessitating its remodelling during cytokinesis. Using RNA interference to deplete individual proteins, we show that the trypanosome katanin and spastin homologues are non-redundant and essential for bloodstream form proliferation. Further, cell cycle analysis revealed that these proteins play essential but discrete roles in cytokinesis. The KAT60 proteins each appear to be important during the early stages of cytokinesis, while downregulation of KAT80 specifically inhibited furrow ingression and SPA depletion prevented completion of abscission. In contrast, RNA interference of FID did not result in any discernible effects. We propose that the stable microtubule cytoskeleton of T. brucei necessitates the coordinated action of a family of katanins and spastin to bring about the cytoskeletal remodelling necessary to complete cell divisio

    Microbial Diversity in the Midguts of Field and Lab-Reared Populations of the European Corn Borer Ostrinia nubilalis

    Get PDF
    Background: Insects are associated with microorganisms that contribute to the digestion and processing of nutrients. The European Corn Borer (ECB) is a moth present world-wide, causing severe economical damage as a pest on corn and other crops. In the present work, we give a detailed view of the complexity of the microorganisms forming the ECB midgut microbiota with the objective of comparing the biodiversity of the midgut-associated microbiota and explore their potential as a source of genes and enzymes with biotechnological applications. Methodological/Principal Findings: A high-throughput sequencing approach has been used to identify bacterial species, genes and metabolic pathways, particularly those involved in plant-matter degradation, in two different ECB populations (field-collected vs. lab-reared population with artificial diet). Analysis of the resulting sequences revealed the massive presence of Staphylococcus warneri and Weissella paramesenteroides in the lab-reared sample. This enabled us to reconstruct both genomes almost completely. Despite the apparently low diversity, 208 different genera were detected in the sample, although most of them at very low frequency. By contrast, the natural population exhibited an even higher taxonomic diversity along with a wider array of cellulolytic enzyme families. However, in spite of the differences in relative abundance of major taxonomic groups, not only did both metagenomes share a similar functional profile but also a similar distribution of non-redundant genes in different functional categories. Conclusions/Significance: Our results reveal a highly diverse pool of bacterial species in both O. nubilalis populations, with major differences: The lab-reared sample is rich in gram-positive species (two of which have almost fully sequenced genomes) while the field sample harbors mainly gram-negative species and has a larger set of cellulolytic enzymes. We have found a clear relationship between the diet and the midgut microbiota, which reveals the selection pressure of food on the community of intestinal bacteria. © 2011 Belda et al.The research was funded by the Spanish Ministerio de Ciencia e Innovacion, under grant agreement CIT-010000-2008-5 and by a MICINN (Ministerio de Ciencia e Innovacion) TIN2009-12359 ArtBioCom project. Arnau Montagud acknowledges Generalitat Valenciana grant BFPI/2007/283. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Belda Cuesta, EA.; Pedrola, L.; Peretó Magraner, J.; Martinez Blanch, JF.; Montagud Aquino, A.; Navarro-Peris, E.; Urchueguía Schölzel, JF.... (2011). Microbial Diversity in the Midguts of Field and Lab-Reared Populations of the European Corn Borer Ostrinia nubilalis. PLoS ONE. 6(6):21751-21751. https://doi.org/10.1371/journal.pone.0021751S21751217516

    Qualitative aspects and validation of a screening method for pesticides in vegetables and fruits based on liquid chromatography coupled to full scan high resolution (Orbitrap) mass spectrometry

    Get PDF
    The analytical capabilities of liquid chromatography with single-stage high-resolution mass spectrometry have been investigated with emphasis on qualitative aspects related to selective detection during screening and to identification. The study involved 21 different vegetable and fruit commodities, a screening database of 556 pesticides for evaluation of false positives, and a test set of 130 pesticides spiked to the commodities at 0.01, 0.05, and 0.20 mg/kg for evaluation of false negatives. The final method involved a QuEChERS-based sample preparation (without dSPE clean up) and full scan acquisition using alternating scan events without/with fragmentation, at a resolving power of 50,000. Analyte detection was based on extraction of the exact mass (±5 ppm) of the major adduct ion at the database retention time ±30 s and the presence of a second diagnostic ion. Various options for the additional ion were investigated and compared (other adduct ions, M + 1 or M + 2 isotopes, fragments). The two-ion approach for selective detection of the pesticides in the full scan data was compared with two alternative approaches based on response thresholds. Using the two-ion approach, the number of false positives out of 11,676 pesticide/commodity combinations targeted was 36 (0.3 %). The percentage of false negatives, assessed for 2,730 pesticide/commodity combinations, was 13 %, 3 %, and 1 % at the 0.01-, 0.05-, and 0.20-mg/kg level, respectively (slightly higher with fully automated detection). Following the SANCO/12495/2011 protocol for validation of screening methods, the screening detection limit was determined for 130 pesticides and found to be 0.01, 0.05, and ≥0.20 mg/kg for 86, 30, and 14 pesticides, respectively. For the detected pesticides in the spiked samples, the ability for unambiguous identification according to EU criteria was evaluated. A proposal for adaption of the criteria was made

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    A three-dimensional view of structural changes caused by deactivation of fluid catalytic cracking catalysts

    Get PDF
    Since its commercial introduction three-quarters of a century ago, fluid catalytic cracking has been one of the most important conversion processes in the petroleum industry. In this process, porous composites composed of zeolite and clay crack the heavy fractions in crude oil into transportation fuel and petrochemical feedstocks. Yet, over time the catalytic activity of these composite particles decreases. Here, we report on ptychographic tomography, diffraction, and fluorescence tomography, as well as electron microscopy measurements, which elucidate the structural changes that lead to catalyst deactivation. In combination, these measurements reveal zeolite amorphization and distinct structural changes on the particle exterior as the driving forces behind catalyst deactivation. Amorphization of zeolites, in particular, close to the particle exterior, results in a reduction of catalytic capacity. A concretion of the outermost particle layer into a dense amorphous silica–alumina shell further reduces the mass transport to the active sites within the composite

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    TACOA – Taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach

    Get PDF
    Diaz NN, Krause L, Goesmann A, Niehaus K, Nattkemper TW. TACOA - Taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach. BMC Bioinformatics. 2009;10(1):56.Background: Metagenomics, or the sequencing and analysis of collective genomes (metagenomes) of microorganisms isolated from an environment, promises direct access to the "unculturable majority". This emerging field offers the potential to lay solid basis on our understanding of the entire living world. However, the taxonomic classification is an essential task in the analysis of metagenomics data sets that it is still far from being solved. We present a novel strategy to predict the taxonomic origin of environmental genomic fragments. The proposed classifier combines the idea of the k-nearest neighbor with strategies from kernel-based learning. Results Our novel strategy was extensively evaluated using the leave-one-out cross validation strategy on fragments of variable length (800 bp – 50 Kbp) from 373 completely sequenced genomes. TACOA is able to classify genomic fragments of length 800 bp and 1 Kbp with high accuracy until rank class. For longer fragments ≥ 3 Kbp accurate predictions are made at even deeper taxonomic ranks (order and genus). Remarkably, TACOA also produces reliable results when the taxonomic origin of a fragment is not represented in the reference set, thus classifying such fragments to its known broader taxonomic class or simply as "unknown". We compared the classification accuracy of TACOA with the latest intrinsic classifier PhyloPythia using 63 recently published complete genomes. For fragments of length 800 bp and 1 Kbp the overall accuracy of TACOA is higher than that obtained by PhyloPythia at all taxonomic ranks. For all fragment lengths, both methods achieved comparable high specificity results up to rank class and low false negative rates are also obtained. Conclusion: An accurate multi-class taxonomic classifier was developed for environmental genomic fragments. TACOA can predict with high reliability the taxonomic origin of genomic fragments as short as 800 bp. The proposed method is transparent, fast, accurate and the reference set can be easily updated as newly sequenced genomes become available. Moreover, the method demonstrated to be competitive when compared to the most current classifier PhyloPythia and has the advantage that it can be locally installed and the reference set can be kept up-to-date. Background

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore