379 research outputs found

    The potential for the use of population health indices in the Predatory Bird Monitoring Scheme: a Predatory Bird Monitoring Scheme (PBMS) report

    Get PDF
    The Predatory Bird Monitoring Scheme (PBMS; http://pbms.ceh.ac.uk/) is the umbrella project that encompasses the Centre for Ecology & Hydrology’s National Capability activities for contaminant monitoring and surveillance work on avian predators. The PBMS aims to detect and quantify current and emerging chemical threats to the environment and in particular to vertebrate wildlife. Each bird that is submitted to the scheme is given a post-mortem examination during which approximately 60 macroscopic observations and measurements are made. The information gathered during this examination could potentially be used to monitor health status of the birds at the time of their death or at a particular stage of their development. In the current study, we focused on examining potential health indicators for the sparrowhawk, Accipiter nisus, as a candidate species partly because we have a long track record of collecting carcasses and eggs of this species, and so hold a substantial associated post-mortem (PM) observations and egg morphometric data sets. This species is sexually dimorphic, another reason for using it as a candidate species as it allowed us to investigate if the various health indices would need to be (and could be) defined separately by age class and sex. We were able to establish baseline “norms” in the form of Shewhart charts for indicators that could be broadly categorised as indicators of change in: (i) population demography because of altered recruitment, survival and mortality (measures were sex ratio, proportion of first-year birds, proportion deaths from starvation or disease, eggshell index); (ii) nutritional status (measures were body weight, fat score, condition index) and (iii) physiological stress (fluctuating asymmetry). The measurements necessary to calculate these indices are routinely captured by the PBMS through direct input into an Oracle database at the time of PM examination. We also explored the potential for annual monitoring of feather corticosterone as a simple effects biomarker for environmental stress, including environmental contaminants, but further work and resource would be needed to incorporate any such measure into annual health surveillance monitoring. We outline how the health indices described here could be reported in real-time and extended to other species to provide surveillance across different trophic strategists, and ecosystems. This report is intended to prompt debate about the type of population health indices that may be of use in assessing environmental health. It is not intended to be definitive in terms of which should be used

    Periodic orbit resonances in layered metals in tilted magnetic fields

    Full text link
    The frequency dependence of the interlayer conductivity of a layered Fermi liquid in a magnetic field which is tilted away from the normal to the layers is considered. For both quasi-one- and quasi-two-dimensional systems resonances occur when the frequency is a harmonic of the frequency at which the magnetic field causes the electrons to oscillate on the Fermi surface within the layers. The intensity of the different harmonic resonances varies significantly with the direction of the field. The resonances occur for both coherent and weakly incoherent interlayer transport and so their observation does not imply the existence of a three-dimensional Fermi surface.Comment: 4 pages, RevTeX + epsf, 2 figures. Discussion of other work revised. To appear in Phys. Rev. B, Rapid Commun., October 1

    Gamma-Ray Luminosity Function of Blazars and the Cosmic Gamma-Ray Background: Evidence for the Luminosity Dependent Density Evolution

    Full text link
    We present a comprehensive study for the gamma-ray luminosity function (GLF) of blazars and their contribution to the extragalactic diffuse gamma-ray background (EGRB). Radio and gamma-ray luminosity correlation is introduced to take into account the radio detectability which is important for the blazar identification. Previous studies considered only pure luminosity evolution (PLE) or pure density evolution, but we introduce the luminosity dependent density evolution (LDDE) model, which is favored from the evolution of X-ray luminosity function (XLF) of AGNs. The model parameters are constrained by likelihood analyses about the observed redshift and gamma-ray flux distributions of the EGRET blazars. We find that the LDDE model gives a better fit to the observed distributions than the PLE model, indicating that the LDDE model is also appropriate for gamma-ray blazars, and that the jet activity is universally correlated with the accretion history of AGNs. The normalization between the GLF and XLF is consistent with the unified picture of AGNs, when the beaming and a reasonable duty cycle of jet activity are taken into account. We then find that only 25--50% of the EGRB can be explained by unresolved blazars with the best-fit LDDE parameters. Unresolved blazars can account for all the EGRB only with a steeper index of the faint-end slope of the GLF, which is marginally consistent with the EGRET data but inconsistent with that of the XLF. Therefore unresolved AGNs cannot be the dominant source of the EGRB, unless there is a new population of gamma-ray emitting AGNs that evolves differently from the XLF of AGNs. Predictions for the GLAST mission are made, and we find that the best-fit LDDE model predicts about 3000 blazars in the entire sky, which is considerably fewer than a previous estimate.Comment: 13 pages, 12 figures, accepted by ApJ; minor typos corrected and some figures revised, main conclusions essentially unchange

    Magnetic field-dependent interplay between incoherent and Fermi liquid transport mechanisms in low-dimensional tau phase organic conductors

    Full text link
    We present an electrical transport study of the 2-dimensional (2D) organic conductor tau-(P-(S,S)-DMEDT-TTF)_2(AuBr)_2(AuBr_2)_y (y = 0.75) at low temperatures and high magnetic fields. The inter-plane resistivity rho_zz increases with decreasing temperature, with the exception of a slight anomaly at 12 K. Under a magnetic field B, both rho_zz and the in-plane resistivity plane rho_xx show a pronounced negative and hysteretic magnetoresistance with Shubnikov de Haas (SdH)oscillations being observed in some (high quality)samples above 15 T. Contrary to the predicted single, star-shaped, closed orbit Fermi surface from band structure calculations (with an expected approximate area of 12.5% of A_FBZ), two fundamental frequencies F_l and F_h are detected in the SdH signal. These orbits correspond to 2.4% and 6.8% of the area of the first Brillouin zone(A_FBZ), with effective masses F_l = 4.0 +/- 0.5 and F_h = 7.3 +/- 0.1. The angular dependence, in tilted magnetic fields of F_l and F_h, reveals the 2D character of the FS and Angular dependent magnetoresistance (AMRO) further suggests a FS which is strictly 2-D where the inter-plane hopping t_c is virtually absent or incoherent. The Hall constant R_xy is field independent, and the Hall mobility increases by a factor of 3 under moderate magnetic fields. Our observations suggest a unique physical situation where a stable 2D Fermi liquid state in the molecular layers are incoherently coupled along the least conducting direction. The magnetic field not only reduces the inelastic scattering between the 2D metallic layers, but it also reveals the incoherent nature of interplane transport in the AMRO spectrum. The apparent ferromagnetism of the hysteretic magnetoresistance remains an unsolved problem.Comment: 33 pages, 11 figure

    Further investigation of a relic neutralino as a possible origin of an annual-modulation effect in WIMP direct search

    Get PDF
    We analyze the annual-modulation effect, measured by the DAMA Collaboration with the new implementation of a further two-years running, in the context of a possible interpretation in terms of relic neutralinos. We impose over the set of supersymmetric configurations, selected by the annual-modulation data, the constraints derived from WIMP indirect measurements, and discuss the features of the ensuing relic neutralinos. We critically discuss the sources of the main theoretical uncertainties in the analysis of event rates for direct and indirect WIMP searches.Comment: 29 pages, 12 figures, typeset with ReVTeX. In order to reduce size, the version on the archive has low resolution figures. A full version of the paper can be found at http://www.to.infn.it/~fornengo/papers

    Indirect signals from light neutralinos in supersymmetric models without gaugino mass unification

    Full text link
    We examine indirect signals produced by neutralino self-annihilations, in the galactic halo or inside celestial bodies, in the frame of an effective MSSM model without gaugino-mass unification at a grand unification scale. We compare our theoretical predictions with current experimental data of gamma-rays and antiprotons in space and of upgoing muons at neutrino telescopes. Results are presented for a wide range of the neutralino mass, though our discussions are focused on light neutralinos. We find that only the antiproton signal is potentially able to set constraints on very low-mass neutralinos, below 20 GeV. The gamma-ray signal, both from the galactic center and from high galactic latitudes, requires significantly steep profiles or substantial clumpiness in order to reach detectable levels. The up-going muon signal is largely below experimental sensitivities for the neutrino flux coming from the Sun; for the flux from the Earth an improvement of about one order of magnitude in experimental sensitivities (with a low energy threshold) can make accessible neutralino masses close to O, Si and Mg nuclei masses, for which resonant capture is operative.Comment: 17 pages, 1 tables and 5 figures, typeset with ReVTeX4. The paper may also be found at http://www.to.infn.it/~fornengo/papers/indirect04.ps.gz or through http://www.astroparticle.to.infn.it/. Limit from BR(Bs--> mu+ mu-) adde

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Antiprotons in cosmic rays from neutralino annihilation

    Full text link
    We calculate the antiproton flux due to relic neutralino annihilations, in a two-dimensional diffusion model compatible with stable and radioactive cosmic ray nuclei. We find that the uncertainty in the primary flux induced by the propagation parameters alone is about two orders of magnitude at low energies, and it is mainly determined by the lack of knowledge on the thickness of the diffusive halo. On the contrary, different dark matter density profiles do not significantly alter the flux: a NFW distribution produces fluxes which are at most 20% higher than an isothermal sphere. The most conservative choice for propagation parameters and dark matter distribution normalization, together with current data on cosmic antiprotons, cannot lead to any definitive constraint on the supersymmetric parameter space, neither in a low-energy effective MSSM, or in a minimal SUGRA scheme. However, if the best choice for propagation parameters - corresponding to a diffusive halo of L=4 kpc - is adopted, some supersymmetric configurations with the neutralino mass of about 100 GeV should be considered as excluded. An enhancement flux factor - due for instance to a clumpy dark halo or to a higher local dark matter density - would imply a more severe cut on the supersymmetric parameters.Comment: 23 pages, 2 tables and 19 figures, typeset with ReVTeX4. The paper may also be found at http://www.to.infn.it/~fornengo/papers/pbar03.ps.gz or through http://www.to.infn.it/astropart/index.html A subsection added. Final version to appear in PR

    Dark matter and collider phenomenology of split-UED

    Full text link
    We explicitly show that split-universal extra dimension (split-UED), a recently suggested extension of universal extra dimension (UED) model, can nicely explain recent anomalies in cosmic-ray positrons and electrons observed by PAMELA and ATIC/PPB-BETS. Kaluza-Klein (KK) dark matters mainly annihilate into leptons because the hadronic branching fraction is highly suppressed by large KK quark masses and the antiproton flux agrees very well with the observation where no excess is found . The flux of cosmic gamma-rays from pion decay is also highly suppressed and hardly detected in low energy region (E<20 GeV). Collider signatures of colored KK particles at the LHC, especially q_1 q_1 production, are studied in detail. Due to the large split in masses of KK quarks and other particles, hard p_T jets and missing E_T are generated, which make it possible to suppress the standard model background and discover the signals.Comment: 32 pages, 15 figure
    • 

    corecore