262 research outputs found

    Solving the time-dependent Maxwell equations by unconditionally stable algorithms

    Get PDF

    Solving the time-dependent Maxwell equations by unconditionally stable algorithms

    Get PDF

    Chebyshev method to solve the time-dependent Maxwell equations

    Get PDF

    Chebyshev method to solve the time-dependent Maxwell equations

    Get PDF
    We present a one-step algorithm to solve the time-dependent Maxwell equations for systems with spatially varying permittivity and permeability. We compare the results of this algorithm with those obtained from unconditionally stable algorithms and demonstrate that for a range of applications the one-step algorithm may be orders of magnitude more efficient than multiple time-step, finite-difference time-domain algorithms. We discuss both the virtues and limitations of this one-step approach.</p

    Photonic band gaps in materials with triply periodic surfaces and related tubular structures

    Full text link
    We calculate the photonic band gap of triply periodic bicontinuous cubic structures and of tubular structures constructed from the skeletal graphs of triply periodic minimal surfaces. The effect of the symmetry and topology of the periodic dielectric structures on the existence and the characteristics of the gaps is discussed. We find that the C(I2-Y**) structure with Ia3d symmetry, a symmetry which is often seen in experimentally realized bicontinuous structures, has a photonic band gap with interesting characteristics. For a dielectric contrast of 11.9 the largest gap is approximately 20% for a volume fraction of the high dielectric material of 25%. The midgap frequency is a factor of 1.5 higher than the one for the (tubular) D and G structures

    Random Series and Discrete Path Integral methods: The Levy-Ciesielski implementation

    Full text link
    We perform a thorough analysis of the relationship between discrete and series representation path integral methods, which are the main numerical techniques used in connection with the Feynman-Kac formula. First, a new interpretation of the so-called standard discrete path integral methods is derived by direct discretization of the Feynman-Kac formula. Second, we consider a particular random series technique based upon the Levy-Ciesielski representation of the Brownian bridge and analyze its main implementations, namely the primitive, the partial averaging, and the reweighted versions. It is shown that the n=2^k-1 subsequence of each of these methods can also be interpreted as a discrete path integral method with appropriate short-time approximations. We therefore establish a direct connection between the discrete and the random series approaches. In the end, we give sharp estimates on the rates of convergence of the partial averaging and the reweighted Levy-Ciesielski random series approach for sufficiently smooth potentials. The asymptotic rates of convergence are found to be O(1/n^2), in agreement with the rates of convergence of the best standard discrete path integral techniques.Comment: 20 pages, 4 figures; the two equations before Eq. 14 are corrected; other typos are remove

    Measurement of the mass difference between top quark and antiquark in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Searches for invisible decays of the Higgs boson in pp collisions at root S=7, 8, and 13 TeV

    Get PDF
    Peer reviewe
    corecore