-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by University of Groningen

- . . ",}/
w7 university of /% .
_/ groningen '/{::{7/’4/, niversity Medical Center Groningen

University of Groningen

Chebyshev method to solve the time-dependent Maxwell equations
Raedt, H. De; Michielsen, K.; Kole, J.S.; Figge, M.T.

Published in:
COMPUTER SIMULATION STUDIES IN CONDENSED-MATTER PHYSICS XV

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2003

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Raedt, H. D., Michielsen, K., Kole, J. S., & Figge, M. T. (2003). Chebyshev method to solve the time-
dependent Maxwell equations. In DP. Landau, SP. Lewis, & HB. Schuttler (Eds.), COMPUTER
SIMULATION STUDIES IN CONDENSED-MATTER PHYSICS XV (Vol. 90, pp. 211-215). (SPRINGER
PROCEEDINGS IN PHYSICS; Vol. 90). Berlin: University of Groningen, The Zernike Institute for Advanced
Materials.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-11-2019


https://core.ac.uk/display/232354323?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.rug.nl/research/portal/en/publications/chebyshev-method-to-solve-the-timedependent-maxwell-equations(bd4569ec-d3b4-4a16-9776-0f6a4c074417).html

Chebyshev Method to solve the
Time-Dependent Maxwell equations

H. De Raedt, K. Michielsen, J.S. Kole, and M.T. Figge

Institute for Theoretical Physics and Materials Science Centre
University of Groningen, Nijenborgh 4,
NL-9747 AG Groningen, The Netherlands
E-mail: deraedt@phys.rug.nl, kristel@phys.rug.nl,
j.s.kole@phys.rug.nl, m.t.figge@phys.rug.nl
http://www.compphys.rug.nl/
Version: 20 March 2002

Abstract. We present a one-step algorithm to solve the time-dependent
Maxwell equations for systems with spatially varying permittivity and
permeability. We compare the results of this algorithm with those ob-
tained from unconditionally stable algorithms and demonstrate that for
a range of applications the one-step algorithm may be orders of magni-
tude more efficient than multiple time-step, finite-difference time-domain
algorithms. We discuss both the virtues and limitations of this one-step
approach.

1 Introduction

Many applications in physics and engineering require numerical methods to solve
the time-dependent Maxwell equations (TDME) [1]. A popular approach is the
finite-difference time-domain (FDTD) method [1] based on a proposal by Yee [2].
It is flexible, fast and easy to implement. A limitation of Yee-based FDTD tech-
niques is that their stability is conditional, depending on the mesh size of the
spatial discretization and the time step of the time integration [1].

Recently we have introduced a family of unconditionally stable algorithms
to solve the TDME [3-5]. The operator that governs the time evolution of the
electromagnetic (EM) fields is orthogonal and can be written as the matrix
exponential of a skew-symmetric matrix [3,5]. Orthogonal approximations to
the time-evolution operator yield unconditionally stable algorithms by construc-
tion [13]. Details of the construction of such algorithms can be found elsewhere [3,
5].

A limitation of both the Yee-based [1] and our unconditionally stable algo-
rithms [3, 5] is that the amount of computational work required to propagate the
EM fields for long times may be prohibitive for a class of important applications,
such a bioelectromagnetics and VLSI design [1, 6, 7]. The basic reason for this is
that in order to maintain a reasonable degree of accuracy during the time inte-
gration, the time step has to be relatively small. In addition, in the Yee-based
approach the time step is also limited by the Courant number [1].



A well-known alternative to time-stepping is to use Chebyshev polynomials
to construct approximations to the time-evolution operator [8-10,12]. In this
paper we make use of these rapidly converging polynomial approximations to
construct a one-step algorithm that solves the TDME. Also in this case the
orthogonality of the time-evolution operator plays a key role in the construction
of the algorithm.

2 One-step algorithm

In the absence of charges and currents, the TDME can be written as [3, 5]

0
S(t) = (1), (1)
where ¥(t) is a vector that contains all information on the magnetic fields H =
(Hy(r,t), Hy(r,t), H.(r,t))" and electric fields E = (E,(r,t), By (r,t), E.(r,t))T.
The operator H is a compact representation for the curl operators that appear
in the Maxwell equations [3]. Its precise form is not important for what follows.
We will only use the fact that H is skew-symmetric, i.e. HT = —H, with respect
to the inner product (¢|¥') = [, ¥ - W' dr, where V denotes the volume of the
enclosing, perfectly conducting box. The formal solution of Eq. (1) is given by
U(t) = Ut)¥(0) = eM¥(0) where ¥(0) represents the initial state of the EM
fields.

A numerical procedure that solves the TDME involves a discretization of
the spatial derivatives. This maps the continuum problem described by H onto
a lattice problem defined by a (sparse) matrix H. The underlying symmetry
of the TDME suggests to use matrices H that are real and skew-symmetric.
The discretization procedure itself is not essential for what follows as long as
H is skew symmetric. We omit these technicalities here and refer the reader to
Ref. [3].

The time evolution of the EM fields on the lattice is given by ¥(t + 7) =
U(T)¥(t) = e"HW(t). The final step in the construction of the numerical proce-
dure to solve the Maxwell equation is to choose a (good) approximation of the
time-evolution operator U(7). In the case of the Chebyshev approach we proceed
as follows.

First we “normalize” the matrix H. The eigenvalues of the skew-symmetric
matrix H are pure imaginary numbers. Hence the eigenvalues of the Hermitian
matrix A = —iH are real and if a is one of these eigenvalues so is —a. The
eigenvalues of A lie in the interval [—||Al|2, ||A||2] where ||A]|2 is the largest (in
absolute value) eigenvalue of A [14]. Obviously ||A||2 is hard to find. However
for our purposes we only need an upperbound to ||A|2. Since A is sparse it
is easy to compute ||A|; = max; ), |A4;;| and the upperbound follows from
Al < ||A|lx [14]. Note that ||A|l; = ||H|l1- By construction the eigenvalues
of B= A/||A||s = —iH/||H||y all lie in the interval [—1, 1]. The time-evolution
operator then reads U(t) = et = ¢**B where z = t| Al|;.



Fig. 1. Initial (left) and final distribution of the EM field intensity at ¢ = 5 of the TM
mode, as obtained from the numerical solution of the Maxwell equations by the one-
step algorithm (5) with K = 194. The fourth-order unconditionally stable algorithm
T452 [3,4] yields the same pictures (not shown).

Expanding the initial value ¥(0) in the (unknown) eigenvectors b; of B we
have ¥(t) = U(t)¥(0) = e**Bw(0) = > e*bib;(b;|¥(0)) where the b; denote
the (unknown) eigenvalues of B. Using e?*® = Jo(2)+2 > pe | i¥ Ji(2) Ty () where
Jn(2) is the Bessel function of integer order n and T),(z) = cos(n arccos x) is the
n-th Chebyshev polynomial of the first kind [15], we obtain

oo
P (0) = | Jo(2)I + 2 Ji(2)Ti(B) | (0). (2)
k=1
Here I is the identity matrix and Ty (B) = i*T,(B) is a matrix-valued modified
Chebyshev polynomial that is defined by the recursion

To(B)P(0) =w(0) , Ty(B)¥(0)=iB¥(0), (3)
Thi1(B)#(0) = 2i BT (B)¥(0) + T_1(B)¥(0) for k> 1. (4)

From Eqs.(3),(4) it is clear that Ty (B)¥(0) is real valued, as it should be in the
case of the Maxwell equations.

In practice we will have to truncate the sum in Eq.(2), i.e. we will use only
the first K 4 1 contributions to approximate U (¢)¥(0):

K
w(t) = MW (0) ~ | Jo(t|HI1)T +2> Ju(t| H|[)Tk(B) | #(0). (5)
k=1
As ||T(B)||1 < 1 by construction and |Ji(2)| < |z|*/2FK! for 2 real [15], we may
expect that the error of this approximation vanishes (exponentially) fast with
increasing K if K is sufficiently large.



Table 1. Performance of the one-step algorithm that solves the TDME for three dif-
ferent times ¢ as obtained from simulations of the two-dimensional system depicted in
Fig.1. The fourth-order unconditionally stable algorithm 7'452 [3,4] with a time step
7 was used to compute ¥ (¢, 7). The vector ¥(t), obtained by the Chebyshev method,
was taken as reference for the calculation of the error e = ||¥(t) — ¥ (¢, 7)||. Nu is the
number of times the operation H¥ was carried out.

T e Ny e Np e Ny

0.100 25x 1072 200] 5.3x 1072 500| 1.8 x 1072 2000
0.010 4.0x 1077 2000 8.5x 1077 5000| 2.9 x 107 20000
0.001 |4.0 x 1071 20000 | 8.5 x 10~ 50000 |2.9 x 10~° 200000

Chebyshev 0 96 0 194 0 649

According to Eq.(5), performing one time step amounts to repeatedly using
recursion (4) to obtain T}, (B)¥(0) for k =2, ..., K, to multiply the elements of
this vector by Ji(t||H||1) and to add all contributions. This procedure requires
storage for two vectors of the same length as ¥(0) and some code to multiply
such a vector by the sparse matrix H. The coefficients Ji(t|[H||1) should be
calculated to sufficiently high precision. The number K is fixed by requiring that
|Jk(t]| H||1)| < & for all K > K. Here k is a control parameter that determines
the accuracy of the solution. Keeping & fixed, it is evident that the larger ¢|| H]||1,
the larger K will have to be in order to keep the accuracy the same.

3 Simulation Results

In our simulations we measure distances in units of the wavelength A and time
in units of A/c where c is the speed of light in vacuum. In Fig.1 we present
numerical results for a two-dimensional system of size 12 x 10, with mesh size
6 = 0.1. The number of lattice sites in the = and y-direction is L, = 239
and L, = 199 respectively. The shape of the initial wave (see Fig.1, left) is
exp(—((z—z0) /o) = ((y—y0)/0y)?) sin(g(z—x)) with a spread o, = 2.75 and
oy = 2, is centered at (xg,yo) = (3.5,5.5) and has energy w = ¢ = 5. Initially
this wavepacket approaches the two rectangular blocks of dielectric material
(permittivity € = 5, permeability g = 1) from the left.

In Table I we present the results of an error analysis and arithmetic-operation
count. The calculations have been carried out for the same system as in Fig.1.
The fourth-order unconditionally stable algorithm 7452 [3,4] with a time step
7 was used to compute ¥(t,7). From Table I we see that the error of T4S2
decreases as 74, as it should [13]. For 7 = 0.001 the result of T4S2 and of the
one-step algorithm are about the same to working precision. Depending on the
desired accuracy of the T4S2 calculation, the comparison of the Ng’s of the one-
step and T4S2 algorithm shows that the former can be orders of magnitude more



efficient. Also the Yee FDTD algorithm is no match for the one-step algorithm
from the point of view of efficiency.

Although we have not yet made serious efforts to optimize the code, typically
the one-step algorithm is more than an order of magnitude faster than FDTD
algorithms [16]. This roughly matches our expectations based on a count of the
number of arithmetic operations for the two methods, taking as input the value
of K on the one hand, and the number of time steps and the order of the FDTD
algorithms on the other. Our general conclusions are in concert with those drawn
on the basis of numerical experiments with the Schrédinger equation [9].
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