488 research outputs found
Failing boys and moral panics: perspectives on the underachievement debate
The paper re-examines the underachievement debate from the perspective of the âdiscourse of derisionâ that surrounds much writing in this area. It considers the contradictions and inconsistencies which underpin much of the discourse â from a reinterpretation of examination scores, to the conflation of the concepts of âunderâ and âlowâ achievement and finally to the lack of consensus on a means of defining and measuring the term underachievement. In doing so, this paper suggests a more innovative approach for understanding, re-evaluating and perhaps rejecting the notion of underachievement
Relativistic Calculation of the Meson Spectrum: a Fully Covariant Treatment Versus Standard Treatments
A large number of treatments of the meson spectrum have been tried that
consider mesons as quark - anti quark bound states. Recently, we used
relativistic quantum "constraint" mechanics to introduce a fully covariant
treatment defined by two coupled Dirac equations. For field-theoretic
interactions, this procedure functions as a "quantum mechanical transform of
Bethe-Salpeter equation". Here, we test its spectral fits against those
provided by an assortment of models: Wisconsin model, Iowa State model,
Brayshaw model, and the popular semi-relativistic treatment of Godfrey and
Isgur. We find that the fit provided by the two-body Dirac model for the entire
meson spectrum competes with the best fits to partial spectra provided by the
others and does so with the smallest number of interaction functions without
additional cutoff parameters necessary to make other approaches numerically
tractable. We discuss the distinguishing features of our model that may account
for the relative overall success of its fits. Note especially that in our
approach for QCD, the resulting pion mass and associated Goldstone behavior
depend sensitively on the preservation of relativistic couplings that are
crucial for its success when solved nonperturbatively for the analogous
two-body bound-states of QED.Comment: 75 pages, 6 figures, revised content
Layered control architectures in robots and vertebrates
We revieiv recent research in robotics, neuroscience, evolutionary neurobiology, and ethology with the aim of highlighting some points of agreement and convergence. Specifically, we com pare Brooks' (1986) subsumption architecture for robot control with research in neuroscience demonstrating layered control systems in vertebrate brains, and with research in ethology that emphasizes the decomposition of control into multiple, intertwined behavior systems. From this perspective we then describe interesting parallels between the subsumption architecture and the natural layered behavior system that determines defense reactions in the rat. We then consider the action selection problem for robots and vertebrates and argue that, in addition to subsumption- like conflict resolution mechanisms, the vertebrate nervous system employs specialized selection mechanisms located in a group of central brain structures termed the basal ganglia. We suggest that similar specialized switching mechanisms might be employed in layered robot control archi tectures to provide effective and flexible action selection
Spatial representation for navigation in animats
This article considers the problem of spatial representation for animat navigation systems. It is proposed that the global navigation task, or "wayfinding, " is best supported by multiple interacting subsystems, each of which builds its own partial representation of relevant world knowledge. Evidence from the study of animal navigation is reviewed to demonstrate that similar principles underlie the wayfinding behavior of animals, including humans. A simulated wayfinding system is described that embodies and illustrates several of the themes identified with animat navigation. This system constructs a network of partial models of the quantitative spatial relations between groups of salient landmarks. Navigation tasks are solved by propagating egocentric view information through this network, using a simple but effective heuristic to arbitrate between multiple solutions
Measurement of the branching ratio Î(Îbâ° â Ï(2S)Î0)/Î(Îbâ° â J/ÏÎ0) with the ATLAS detector
An observation of the decay and
a comparison of its branching fraction with that of the decay has been made with the ATLAS detector in
proton--proton collisions at TeV at the LHC using an integrated
luminosity of fb. The and mesons are
reconstructed in their decays to a muon pair, while the decay is exploited for the baryon reconstruction. The
baryons are reconstructed with transverse momentum GeV and pseudorapidity . The measured branching ratio of
the and decays is , lower than the expectation from the
covariant quark model.Comment: 12 pages plus author list (28 pages total), 5 figures, 1 table,
published on Physics Letters B 751 (2015) 63-80. All figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/BPHY-2013-08
- âŠ