122 research outputs found

    The spectral theorem of many-body Green's function theory when there are zero eigenvalues of the matrix governing the equations of motion

    Full text link
    In using the spectral theorem of many-body Green's function theory in order to relate correlations to commutator Green's functions, it is necessary in the standard procedure to consider the anti-commutator Green's functions as well whenever the matrix governing the equations of motion for the commutator Green's functions has zero eigenvalues. We show that a singular-value decomposition of this matrix allows one to reformulate the problem in terms of a smaller set of Green's functions with an associated matrix having no zero eigenvalues, thus eliminating the need for the anti-commutator Green's functions. The procedure is quite general and easy to apply. It is illustrated for the field-induced reorientation of the magnetization of a ferromagnetic Heisenberg monolayer and it is expected to work for more complicated cases as well.Comment: 4 pages, 1 figure, accepted for publication in Physical Review B (16. May 2003

    A new algorithm for linear multiobjective programming problems with bounded variables

    Get PDF

    Polarized photons in radiative muon capture

    Get PDF
    We discuss the measurement of polarized photons arising from radiative muon capture. The spectrum of left circularly polarized photons or equivalently the circular polarization of the photons emitted in radiative muon capture on hydrogen is quite sensitive to the strength of the induced pseudoscalar coupling constant gPg_P. A measurement of either of these quantities, although very difficult, might be sufficient to resolve the present puzzle resulting from the disagreement between the theoretical prediction for gPg_P and the results of a recent experiment. This sensitivity results from the absence of left-handed radiation from the muon line and from the fact that the leading parts of the radiation from the hadronic lines, as determined from the chiral power counting rules of heavy-baryon chiral perturbation theory, all contain pion poles.Comment: 10 pages, 6 figure

    A deep cut ellipsoid algorithm for convex programming

    Get PDF
    This paper proposes a deep cut version of the ellipsoid algorithm for solving a general class of continuous convex programming problems. In each step the algorithm does not require more computational effort to construct these deep cuts than its corresponding central cut version. Rules that prevent some of the numerical instabilities and theoretical drawbacks usually associated with the algorithm are also provided. Moreover, for a large class of convex programs a simple proof of its rate of convergence is given and the relation with previously known results is discussed. Finally some computational results of the deep and central cut version of the algorithm applied to a min—max stochastic queue location problem are reported

    Electromagnetic corrections in eta --> 3 pi decays

    Full text link
    We re-evaluate the electromagnetic corrections to eta --> 3 pi decays at next-to-leading order in the chiral expansion, arguing that effects of order e^2(m_u-m_d) disregarded so far are not negligible compared to other contributions of order e^2 times a light quark mass. Despite the appearance of the Coulomb pole in eta --> pi+ pi- pi0 and cusps in eta --> 3 pi0, the overall corrections remain small.Comment: 21 pages, 11 figures; references updated, version published in EPJ

    Charm and hidden charm scalar mesons in the nuclear medium

    Get PDF
    We study the renormalization of the properties of low lying charm and hidden charm scalar mesons in a nuclear medium, concretely of the D_{s0}(2317) and the theoretical hidden charm state X(3700). We find that for the D_{s0}(2317), with negligible width at zero density, the width becomes about 100 MeV at normal nuclear matter density, while in the case of the X(3700) the width becomes as large as 200 MeV. We discuss the origin of this new width and trace it to reactions occurring in the nucleus, while offering a guideline for future experiments testing these changes. We also show how those medium modifications will bring valuable information on the nature of the scalar resonances and the mechanisms of the interaction of D mesons with nucleons and nuclei

    K pi vector form factor, dispersive constraints and tau -> nu_tau K pi decays

    Full text link
    Recent experimental data for the differential decay distribution of the decay τντKSπ\tau^-\to\nu_\tau K_S\pi^- by the Belle collaboration are described by a theoretical model which is composed of the contributing vector and scalar form factors F+Kπ(s)F_+^{K\pi}(s) and F0Kπ(s)F_0^{K\pi}(s). Both form factors are constructed such that they fulfil constraints posed by analyticity and unitarity. A good description of the experimental measurement is achieved by incorporating two vector resonances and working with a three-times subtracted dispersion relation in order to suppress higher-energy contributions. The resonance parameters of the charged K(892)K^*(892) meson, defined as the pole of F+Kπ(s)F_+^{K\pi}(s) in the complex ss-plane, can be extracted, with the result MK=892.0±0.9M_{K^*}=892.0 \pm 0.9 MeV and ΓK=46.2±0.4\Gamma_{K^*}=46.2 \pm 0.4 MeV. Finally, employing the three-subtracted dispersion relation allows to determine the slope and curvature parameters λ+=(24.7±0.8)103\lambda_+^{'}=(24.7\pm 0.8)\cdot 10^{-3} and λ+=(12.0±0.2)104\lambda_+^{''}=(12.0\pm 0.2)\cdot 10^{-4} of the vector form factor F+Kπ(s)F_+^{K\pi}(s) directly from the data.Comment: 16 pages, 1 figure, version to appear in Eur. Phys. J.

    Physics with the KLOE-2 experiment at the upgraded DAϕ\phiNE

    Get PDF
    Investigation at a ϕ\phi--factory can shed light on several debated issues in particle physics. We discuss: i) recent theoretical development and experimental progress in kaon physics relevant for the Standard Model tests in the flavor sector, ii) the sensitivity we can reach in probing CPT and Quantum Mechanics from time evolution of entangled kaon states, iii) the interest for improving on the present measurements of non-leptonic and radiative decays of kaons and eta/eta^\prime mesons, iv) the contribution to understand the nature of light scalar mesons, and v) the opportunity to search for narrow di-lepton resonances suggested by recent models proposing a hidden dark-matter sector. We also report on the e+ee^+ e^- physics in the continuum with the measurements of (multi)hadronic cross sections and the study of gamma gamma processes.Comment: 60 pages, 41 figures; added affiliation for one of the authors; added reference to section

    Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for strong gravity in multijet final states produced in pp collisions at √s=13 TeV using the ATLAS detector at the LHC

    Get PDF
    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. Limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions
    corecore