118 research outputs found

    Active damping based on decoupled collocated control

    Get PDF
    High-precision machines typically suffer from small but persistent vibrations. As it is difficult to damp these vibrations by passive means, research at the Drebbel Institute at the University of Twente is aimed at the development of an active structural element that can be used for vibration control. The active structural element, popularly referred to as ‘Smart Disc’, is based on a piezoelectric position actuator and a piezoelectric force sensor

    Balanced boosting with parallel perceptrons

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/11494669_26Proceedings of 8th International Work-Conference on Artificial Neural Networks, IWANN 2005, Vilanova i la GeltrĂș, Barcelona, Spain, June 8-10, 2005.Boosting constructs a weighted classifier out of possibly weak learners by successively concentrating on those patterns harder to classify. While giving excellent results in many problems, its performance can deteriorate in the presence of patterns with incorrect labels. In this work we shall use parallel perceptrons (PP), a novel approach to the classical committee machines, to detect whether a pattern’s label may not be correct and also whether it is redundant in the sense of being well represented in the training sample by many other similar patterns. Among other things, PP allow to naturally define margins for hidden unit activations, that we shall use to define the above pattern types. This pattern type classification allows a more nuanced approach to boosting. In particular, the procedure we shall propose, balanced boosting, uses it to modify boosting distribution updates. As we shall illustrate numerically, balanced boosting gives very good results on relatively hard classification problems, particularly in some that present a marked imbalance between class sizes.With partial support of Spain’s CICyT, TIC 01–572

    Parallel Perceptrons, Activation Margins and Imbalanced Training Set Pruning

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/11492542_6Proceedings of Second Iberian Conference, IbPRIA 2005, Estoril, Portugal, June 7-9, 2005, Part IIA natural way to deal with training samples in imbalanced class problems is to prune them removing redundant patterns, easy to classify and probably over represented, and label noisy patterns that belonging to one class are labelled as members of another. This allows classifier construction to focus on borderline patterns, likely to be the most informative ones. To appropriately define the above subsets, in this work we will use as base classifiers the so–called parallel perceptrons, a novel approach to committee machine training that allows, among other things, to naturally define margins for hidden unit activations. We shall use these margins to define the above pattern types and to iteratively perform subsample selections in an initial training set that enhance classification accuracy and allow for a balanced classifier performance even when class sizes are greatly different.With partial support of Spain’s CICyT, TIC 01–572, TIN2004–0767

    Evidence for Unusual Dynamical Arrest Scenario in Short Ranged Colloidal Systems

    Full text link
    Extensive molecular dynamics simulation studies of particles interacting via a short ranged attractive square-well (SW) potential are reported. The calculated loci of constant diffusion coefficient DD in the temperature-packing fraction plane show a re-entrant behavior, i.e. an increase of diffusivity on cooling, confirming an important part of the high volume-fraction dynamical-arrest scenario earlier predicted by theory for particles with short ranged potentials. The more efficient localization mechanism induced by the short range bonding provides, on average, additional free volume as compared to the hard-sphere case and results in faster dynamics.Comment: 4 pages, 3 figure

    Performance of the First ANTARES Detector Line

    Get PDF
    In this paper we report on the data recorded with the first Antares detector line. The line was deployed on the 14th of February 2006 and was connected to the readout two weeks later. Environmental data for one and a half years of running are shown. Measurements of atmospheric muons from data taken from selected runs during the first six months of operation are presented. Performance figures in terms of time residuals and angular resolution are given. Finally the angular distribution of atmospheric muons is presented and from this the depth profile of the muon intensity is derived.Comment: 14 pages, 9 figure

    Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea

    Get PDF
    An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to compare high-resolution acoustic and optical observations between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 m s-1 in late winter and early spring 2006. In the same period, observations were made of enhanced levels of acoustic reflection, interpreted as suspended particles including zooplankton, by a factor of about 10 and of horizontal currents reaching 0.35 m s-1. These observations coincided with high light levels detected by the telescope, interpreted as increased bioluminescence. During winter 2006 deep dense-water formation occurred in the Ligurian subbasin, thus providing a possible explanation for these observations. However, the 10-20 days quasi-periodic episodes of high levels of acoustic reflection, light and large vertical currents continuing into the summer are not direct evidence of this process. It is hypothesized that the main process allowing for suspended material to be moved vertically later in the year is local advection, linked with topographic boundary current instabilities along the rim of the 'Northern Current'.Comment: 30 pages, 7 figure

    On sense and reference: examining the functional neuroanatomy of referential processing

    Get PDF
    In an event-related fMRI study, we examined the cortical networks involved in establishing. reference during language comprehension. We compared BOLD responses to sentences containing referentially ambiguous pronouns (e.g., "Ronald told Frank that he..."), referentially failing pronouns (e.g., "Rose told Emily that he...") or coherent pronouns. Referential ambiguity selectively recruited media[ prefrontal regions, suggesting that readers engaged in problemsolving to select a unique referent from the discourse model. Referential failure elicited activation increases in brain regions associated with mo rp ho -syntactic processing, and, for those readers who took failing pronouns to refer to unmentioned entities, additional regions associated with elaborative inferencing were observed. The networks activated by these two referential problems did not overlap with the network activated by a standard semantic anomaly. Instead, we observed a double dissociation, in that the systems activated by semantic anomaly are deactivated by referential ambiguity, and vice versa. This inverse coupling may reflect the dynamic recruitment of semantic and episodic processing to resolve semantically or referentially problematic situations. More generally, our findings suggest that neurocognitive accounts of language comprehension need to address not just how we parse a sentence and combine individual word meanings, but also how we determine who's who and what's what during language COmprehension. (c) 2007 Elsevier Inc. All rights reserved
    • 

    corecore