18 research outputs found

    Nicotinic Acid Adenine Dinucleotide Phosphate Induces Intracellular Ca2+ Signalling and Stimulates Proliferation in Human Cardiac Mesenchymal Stromal Cells

    Get PDF
    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a newly discovered second messenger that gates two pore channels 1 (TPC1) and 2 (TPC2) to elicit endo-lysosomal (EL) Ca2+ release. NAADP-induced lysosomal Ca2+ release may be amplified by the endoplasmic reticulum (ER) through the Ca2+-induced Ca2+ release (CICR) mechanism. NAADP-induced intracellular Ca2+ signals were shown to modulate a growing number of functions in the cardiovascular system, but their occurrence and role in cardiac mesenchymal stromal cells (C-MSCs) is still unknown. Herein, we found that exogenous delivery of NAADP-AM induced a robust Ca2+ signal that was abolished by disrupting the lysosomal Ca2+ store with Gly-Phe β-naphthylamide, nigericin, and bafilomycin A1, and blocking TPC1 and TPC2, that are both expressed at protein level in C-MSCs. Furthermore, NAADP-induced EL Ca2+ release resulted in the Ca2+-dependent recruitment of ER-embedded InsP3Rs and SOCE activation. Transmission electron microscopy revealed clearly visible membrane contact sites between lysosome and ER membranes, which are predicted to provide the sub-cellular framework for lysosomal Ca2+ to recruit ER-embedded InsP3Rs through CICR. NAADP-induced EL Ca2+ mobilization via EL TPC was found to trigger the intracellular Ca2+ signals whereby Fetal Bovine Serum (FBS) induces C-MSC proliferation. Furthermore, NAADP-evoked Ca2+ release was required to mediate FBS-induced extracellular signal-regulated kinase (ERK), but not Akt, phosphorylation in C-MSCs. These finding support the notion that NAADP-induced TPC activation could be targeted to boost proliferation in C-MSCs and pave the way for future studies assessing whether aberrant NAADP signaling in C-MSCs could be involved in cardiac disorders

    Ca2+ dysregulation in cardiac stromal cells sustains fibro-adipose remodeling in Arrhythmogenic Cardiomyopathy and can be modulated by flecainide

    Get PDF
    BACKGROUND: Cardiac mesenchymal stromal cells (C-MSC) were recently shown to differentiate into adipocytes and myofibroblasts to promote the aberrant remodeling of cardiac tissue that characterizes arrhythmogenic cardiomyopathy (ACM). A calcium (Ca(2+)) signaling dysfunction, mainly demonstrated in mouse models, is recognized as a mechanism impacting arrhythmic risk in ACM cardiomyocytes. Whether similar mechanisms influence ACM C-MSC fate is still unknown. Thus, we aim to ascertain whether intracellular Ca(2+) oscillations and the Ca(2+) toolkit are altered in human C-MSC obtained from ACM patients, and to assess their link with C-MSC-specific ACM phenotypes. METHODS AND RESULTS: ACM C-MSC show enhanced spontaneous Ca(2+) oscillations and concomitant increased Ca(2+)/Calmodulin dependent kinase II (CaMKII) activation compared to control cells. This is manly linked to a constitutive activation of Store-Operated Ca(2+) Entry (SOCE), which leads to enhanced Ca(2+) release from the endoplasmic reticulum through inositol-1,4,5-trisphosphate receptors. By targeting the Ca(2+) handling machinery or CaMKII activity, we demonstrated a causative link between Ca(2+) oscillations and fibro-adipogenic differentiation of ACM C-MSC. Genetic silencing of the desmosomal gene PKP2 mimics the remodelling of the Ca(2+) signalling machinery occurring in ACM C-MSC. The anti-arrhythmic drug flecainide inhibits intracellular Ca(2+) oscillations and fibro-adipogenic differentiation by selectively targeting SOCE. CONCLUSIONS: Altogether, our results extend the knowledge of Ca(2+) dysregulation in ACM to the stromal compartment, as an etiologic mechanism of C-MSC-related ACM phenotypes. A new mode of action of flecainide on a novel mechanistic target is unveiled against the fibro-adipose accumulation in ACM. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12967-022-03742-8

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Patient-specific primary and pluripotent stem cell-derived stromal cells recapitulate key aspects of arrhythmogenic cardiomyopathy

    No full text
    Abstract Primary cardiac mesenchymal stromal cells (C-MSCs) can promote the aberrant remodeling of cardiac tissue that characterizes arrhythmogenic cardiomyopathy (ACM) by differentiating into adipocytes and myofibroblasts. These cells’ limitations, including restricted access to primary material and its manipulation have been overcome by the advancement of human induced pluripotent stem cells (hiPSCs), and their ability to differentiate towards the cardiac stromal population. C-MSCs derived from hiPSCs make it possible to work with virtually unlimited numbers of cells that are genetically identical to the cells of origin. We performed in vitro experiments on primary stromal cells (Primary) and hiPSC-derived stromal cells (hiPSC-D) to compare them as tools to model ACM. Both Primary and hiPSC-D cells expressed mesenchymal surface markers and possessed typical MSC differentiation potentials. hiPSC-D expressed desmosomal genes and proteins and shared a similar transcriptomic profile with Primary cells. Furthermore, ACM hiPSC-D exhibited higher propensity to accumulate lipid droplets and collagen compared to healthy control cells, similar to their primary counterparts. Therefore, both Primary and hiPSC-D cardiac stromal cells obtained from ACM patients can be used to model aspects of the disease. The choice of the most suitable model will depend on experimental needs and on the availability of human source samples

    Omics Analyses of Stromal Cells from ACM Patients Reveal Alterations in Chromatin Organization and Mitochondrial Homeostasis

    No full text
    Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder characterized by ventricular arrhythmias, contractile dysfunctions and fibro-adipose replacement of myocardium. Cardiac mesenchymal stromal cells (CMSCs) participate in disease pathogenesis by differentiating towards adipocytes and myofibroblasts. Some altered pathways in ACM are known, but many are yet to be discovered. We aimed to enrich the understanding of ACM pathogenesis by comparing epigenetic and gene expression profiles of ACM-CMSCs with healthy control (HC)-CMSCs. Methylome analysis identified 74 differentially methylated nucleotides, most of them located on the mitochondrial genome. Transcriptome analysis revealed 327 genes that were more expressed and 202 genes that were less expressed in ACM- vs. HC-CMSCs. Among these, genes implicated in mitochondrial respiration and in epithelial-to-mesenchymal transition were more expressed, and cell cycle genes were less expressed in ACM- vs. HC-CMSCs. Through enrichment and gene network analyses, we identified differentially regulated pathways, some of which never associated with ACM, including mitochondrial functioning and chromatin organization, both in line with methylome results. Functional validations confirmed that ACM-CMSCs exhibited higher amounts of active mitochondria and ROS production, a lower proliferation rate and a more pronounced epicardial-to-mesenchymal transition compared to the controls. In conclusion, ACM-CMSC-omics revealed some additional altered molecular pathways, relevant in disease pathogenesis, which may constitute novel targets for specific therapies

    Photolabile RuIIHalf-Sandwich Complexes Suitable for Developing \u201cCaged\u201d Compounds: Chemical Investigation and Unexpected Dinuclear Species with Bridging Diamine Ligands

    No full text
    Six half-sandwich RuII coordination compounds of the general formula [Ru([9]aneS3)(L\u2013L)(L\u2032)][PF6]n {2\u20137; [9]aneS3 = 1,4,7-trithiacyclononane, L\u2013L = 2,2\u2032-bipyridine (bpy), 1,2-diaminoethane (en), (\ub1)-trans-1,2-diaminocyclohexane (dach), picolinate (pic); L\u2032 = pyridine (py), 3-acetylpyridine (3-acpy), imidazole (im); n = 1 or 2, depending on the nature of L\u2013L} were prepared and characterized. If irradiated with blue light (\u3bb = 400\u2013490 nm) in aqueous solution, they readily dissociate the monodentate L\u2032 ligand to generate selectively the corresponding aqua species. The extent and rate of photoinduced ligand release depend primarily on the nature of the chelating ligand (bpy >> en 48 dach > pic) and, to a minor extent, on that of the leaving ligand (py > im > 3-acpy). Photolabile compounds 2\u20135 showed no significant antiproliferative activity against the MDA-MB-231 human mammary carcinoma cell line, both in the dark and upon irradiation with blue light. The clean photodissociation process that characterizes this class of half-sandwich RuII compounds, and the substantial lack of toxicity of the photogenerated Ru aqua species, suggest that they might be suitable for the preparation of \u201ccaged\u201d RuII compounds. In the frame of this work, two unexpected dinuclear compounds, namely, [{Ru([9]aneS3)(en)}2(\u3bc-en)][CF3SO3]4 (9) and [{Ru([9]aneS3)}2(\u3bc-dach)(\u3bc-CH3O)2][CF3SO3]2\ub72CH3OH (10)\u2015both containing rare examples of bridging en and dach ligands\u2015were also isolated and structurally characterized

    Measurements of ttˉt\bar{t} differential cross-sections of highly boosted top quarks decaying to all-hadronic final states in pppp collisions at s=13\sqrt{s}=13\, TeV using the ATLAS detector

    No full text
    Measurements are made of differential cross-sections of highly boosted pair-produced top quarks as a function of top-quark and ttˉt\bar{t} system kinematic observables using proton--proton collisions at a center-of-mass energy of s=13\sqrt{s} = 13 TeV. The data set corresponds to an integrated luminosity of 36.136.1 fb1^{-1}, recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Events with two large-radius jets in the final state, one with transverse momentum pT>500p_{\rm T} > 500 GeV and a second with pT>350p_{\rm T}>350 GeV, are used for the measurement. The top-quark candidates are separated from the multijet background using jet substructure information and association with a bb-tagged jet. The measured spectra are corrected for detector effects to a particle-level fiducial phase space and a parton-level limited phase space, and are compared to several Monte Carlo simulations by means of calculated χ2\chi^2 values. The cross-section for ttˉt\bar{t} production in the fiducial phase-space region is 292±7 (stat)±76(syst)292 \pm 7 \ \rm{(stat)} \pm 76 \rm{(syst)} fb, to be compared to the theoretical prediction of 384±36384 \pm 36 fb
    corecore