227 research outputs found

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV

    Get PDF
    We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (|η\eta|<0.8) and transverse momentum range 0.2< pTp_{\rm T}< 5.0 GeV/cc. The elliptic flow signal v2_2, measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is 0.087 ±\pm 0.002 (stat) ±\pm 0.004 (syst) in the 40-50% centrality class. The differential elliptic flow v2(pT)_2(p_{\rm T}) reaches a maximum of 0.2 near pTp_{\rm T} = 3 GeV/cc. Compared to RHIC Au-Au collisions at 200 GeV, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase.Comment: 10 pages, 4 captioned figures, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/389

    Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    Get PDF
    37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe

    Nitric oxide triggers a transient metabolic reprogramming in Arabidopsis

    Full text link
    [EN] Nitric oxide (NO) regulates plant growth and development as well as responses to stress that enhanced its endogenous production. Arabidopsis plants exposed to a pulse of exogenous NO gas were used for untargeted global metabolomic analyses thus allowing the identification of metabolic processes affected by NO. At early time points after treatment, NO scavenged superoxide anion and induced the nitration and the S-nitrosylation of proteins. These events preceded an extensive though transient metabolic reprogramming at 6&#8201;h after NO treatment, which included enhanced levels of polyamines, lipid catabolism and accumulation of phospholipids, chlorophyll breakdown, protein and nucleic acid turnover and increased content of sugars. Accordingly, lipid-related structures such as root cell membranes and leaf cuticle altered their permeability upon NO treatment. Besides, NO-treated plants displayed degradation of starch granules, which is consistent with the increased sugar content observed in the metabolomic survey. The metabolic profile was restored to baseline levels at 24&#8201;h post-treatment, thus pointing up the plasticity of plant metabolism in response to nitroxidative stress conditions.This work was supported by grants BIO2011-27526 and BIO2014-56067-P from the Spanish Ministry of Economy and Competitiveness and FEDER funds. We thank support and comments from Danny Alexander (Metabolon Inc., USA) on metabolomic analyses.Leon Ramos, J.; Costa-Broseta, Á.; Castillo López Del Toro, MC. (2016). Nitric oxide triggers a transient metabolic reprogramming in Arabidopsis. Scientific Reports. 6:1-14. doi:10.1038/srep37945S1146Arc, E., Galland, M., Godin, B., Cueff, G. & Rajjou, L. Nitric oxide implication in the control of seed dormancy and germination. Front. Plant Sci. 4, 346 (2013).Beligni, M. V. & Lamattina, L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210, 215–221 (2000).Lozano-Juste, J. & León, J. Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidopsis. Plant Physiol. 156, 1410–1123 (2011).He, Y. et al. Nitric oxide represses the Arabidopsis floral transition. Science 305, 1968–1971 (2004).Tsai, Y. C., Delk, N. A., Chowdhury, N. I. & Braam, J. Arabidopsis potential calcium sensors regulate nitric oxide levels and the transition to flowering. Plant Signal. Behav. 2, 446–454 (2007).Manjunatha, G., Lokesh, V. & Neelwarne, B. Nitric oxide in fruit ripening: trends and opportunities. Biotechnol. Adv. 28, 489–499 (2010).Liu, F. & Guo, F. Q. Nitric oxide deficiency accelerates chlorophyll breakdown and stability loss of thylakoid membranes during dark-induced leaf senescence in Arabidopsis. PLoS One 8(2), e56345 (2013).Du, J. et al. Nitric oxide induces cotyledon senescence involving co-operation of the NES1/MAD1 and EIN2-associated ORE1 signalling pathways in Arabidopsis. J. Exp. Bot. 65, 4051–4063 (2014).Siddiqui, M. H., Al-Whaibi, M. H. & Basalah, M. O. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248, 447–455 (2011).Arasimowicz-Jelonek, M. & Floryszak-Wieczorek, J. Nitric oxide: an effective weapon of the plant or the pathogen? Mol. Plant Pathol. 15, 406–416 (2014).Thomas, D. D. Breathing new life into nitric oxide signaling: A brief overview of the interplay between oxygen and nitric oxide. Redox Biol. 5, 225–33 (2015).Groβ, F., Durner, J. & Gaupels, F. Nitric oxide, antioxidants and prooxidants in plant defence responses. Front. Plant Sci. 4, 419 (2013).Astier, J. & Lindermayr, C. Nitric oxide-dependent posttranslational modification in plants: an update. Int. J. Mol. Sci. 13, 15193–15208 (2012).Hess, D. T. & Stamler, J. S. Regulation by S-nitrosylation of protein post-translational modification. J. Biol. Chem. 287, 4411–4418 (2012).Guerra, D. D. & Callis, J. Ubiquitin on the move: the ubiquitin modification system plays diverse roles in the regulation of endoplasmic reticulum- and plasma membrane-localized proteins. Plant Physiol. 160, 56–64 (2012).Skalska, K., Miller, J. S. & Ledakowicz, S. Trends in NO(x) abatement: a review. Sci. Total Environ. 408, 3976–3989 (2010).Pilegaard, K. Processes regulating nitric oxide emissions from soils. Phil. Transac. Royal Soc. London. Ser. B, Biol. Sci. 368, 20130126 (2013).Jaegle, L., Steinberger, L., Martin, R. V. & Chance, K. Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discus. 130, 407–423 (2005).Gupta, K. J., Fernie, A. R., Kaiser, W. M. & van Dongen, J. T. On the origins of nitric oxide. Trends Plant Sci. 16, 160–168 (2011).Mur, L. A. et al. Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5, pls052 (2013).Correa-Aragunde, N., Foresi, N. & Lamattina, L. Nitric oxide is a ubiquitous signal for maintaining redox balance in plant cells: regulation of ascorbate peroxidase as a case study. J. Exp. Bot. 66, 2913–2921 (2015).Noctor, G., Lelarge-Trouverie, C. & Mhamdi, A. The metabolomics of oxidative stress. Phytochemistry 112, 33–53 (2015).Allan, W. L., Simpson, J. P., Clark, S. M. & Shelp, B. J. Gamma-hydroxybutyrate accumulation in Arabidopsis and tobacco plants is a general response to abiotic stress: putative regulation by redox balance and glyoxylate reductase isoforms. J. Exp. Bot. 59, 2555–2564 (2008).Romero, L. C., Aroca, M. Á., Laureano-Marín, A. M., Moreno, I., García, I. & Gotor, C. Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana. Mol. Plant 7, 264–276 (2014).Noctor, G. et al. Glutathione in plants: an integrated overview. Plant Cell Environ. 35, 454–484 (2012).Feussner, I. & Wasternack, C. The lipoxygenase pathway. Ann. Rev. Plant Biol. 53, 275–297 (2002).Green, M. A. & Fry, S. C. Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate. Nature 433, 83–87 (2005).Szarka, A., Tomasskovics, B. & Bánhegyi, G. The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int. J. Mol. Sci. 13, 4458–4483 (2012).Hurlock, A. K., Roston, R. L., Wang, K. & Benning, C. Lipid trafficking in plant cells. Traffic 15, 915–932 (2014).Blokhina, O., Virolainen, E. & Fagerstedt, K. V. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91, 179–194 (2003).Yeats, T. H. & Rose, J. K. The formation and function of plant cuticles. Plant Physiol. 163, 5–20 (2013).Lozano-Juste, J. & León, J. Enhanced abscisic acid-mediated responses in nia1nia2noa1-2 triple mutant impaired in NIA/NR- and AtNOA1-dependent nitric oxide biosynthesis in Arabidopsis. Plant Physiol. 152, 891–903 (2010).Hörtensteiner, S. Update on the biochemistry of chlorophyll breakdown. Plant Mol Biol. 82, 505–17 (2013).Pruzinská, A. et al. Chlorophyll breakdown in senescent Arabidopsis leaves: characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol. 139, 52–63 (2005).Hirashima, M., Tanaka, R. & Tanaka, A. Light-independent cell death induced by accumulation of pheophorbide a in Arabidopsis thaliana. Plant Cell Physiol. 50, 719–29 (2009).Zottini, M., Costa, A., De Michele, R., Ruzzene, M., Carimi, F. & Lo Schiavo, F. Salicylic acid activates nitric oxide synthesis in Arabidopsis. J Exp Bot. 58, 1397–1405 (2007).Mainz, E. R. et al. Monitoring intracellular nitric oxide production using microchip electrophoresis and laser-induced fluorescence detection. Analytical Methods 4, 414–420 (2012).Vandelle, E. & Delledonne, M. Peroxynitrite formation and function in plants. Plant Sci. 181, 534–539 (2011).Minocha, R., Majumdar, R. & Minocha, S. C. Polyamines and abiotic stress in plants: a complex relationship. Front. Plant Sci. 5, 175 (2014).Parsons H. T., Yasmin, T. & Fry, S. C. Alternative pathways of dehydroascorbic acid degradation in vitro and in plant cell cultures: novel insights into vitamin C catabolism. Biochem. J. 440, 375–383 (2011).Hou, Q., Ufer, G. & Bartels, D. Lipid signalling in plant responses to abiotic stress. Plant Cell Environ. 39, 1029–4108 (2016).Zhou, X. R., Callahan, D. L., Shrestha, P., Liu, Q., Petrie, J. R. & Singh, S. P. Lipidomic analysis of Arabidopsis seed genetically engineered to contain DHA. Front. Plant Sci. 5, 41 (2014).Pohl, C. H. & Kock, J. L. Oxidized fatty acids as inter-kingdom signaling molecules. Molecules 19, 1273–1285 (2014).Araújo, W. L., Tohge, T., Ishizaki, K., Leaver, C. J. & Fernie, A. R. Protein degradation-an alternative respiratory substrate for stressed plants. Trends Plant Sci. 16, 489–498 (2011).Sakamoto, W. & Takami, T. Nucleases in higher plants and their possible involvement in DNA degradation during leaf senescence. J. Exp. Bot. 65, 3835–3843 (2014).Del Duca, S., Serafini-Fracassini, D. & Cai, G. Senescence and programmed cell death in plants: polyamine action mediated by transglutaminase. Front. Plant Sci. 5, 120 (2014).Franco, M. C. & Estévez, A. G. Tyrosine nitration as mediator of cell death. Cell. Mol. Life Sci. 71, 3939–3950 (2014).Palumbo, A., Fiore, G., Di Cristo, C., Di Cosmo, A. & d’Ischia, M. NMDA receptor stimulation induces temporary alpha-tubulin degradation signalled by nitric oxide-mediated tyrosine nitration in the nervous system of Sepia officinalis. Biochem. Biophys. Res. Commun. 293, 1536–1543 (2002).Wang, Y. Y., Lin, S. Y., Chuang, Y. H., Mao, C. H., Tung, K. C. & Sheu, W. H. Protein nitration is associated with increased proteolysis in skeletal muscle of bile duct ligation-induced cirrhotic rats. Metabolism 59, 468–472 (2010).Castillo, M. C., Lozano-Juste, J., González-Guzmán, M., Rodriguez, L., Rodriguez, P. L. & León, J. Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Sci. Signal. 8(392), ra89 (2015).Blaise, G. A., Gauvin, D., Gangal, M. & Authier, S. Nitric oxide, cell signaling and cell death. Toxicology 208, 177–192 (2005).Brüne, B. Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ. 10, 864–869 (2003).Wang, Y., Chen, C., Loake, G. J. & Chu, C. Nitric oxide: promoter or suppressor of programmed cell death? Prot. Cell 1, 133–142 (2010).Serrano, I., Romero-Puertas, M. C., Sandalio, L. M. & Olmedilla, A. The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. J. Exp. Bot. 66, 2869–2876 (2015).Huang, S., Hill, R. D. & Stasolla, C. Plant hemoglobin participation in cell fate determination. Plant Signal. Behavior 9, e29485 (2014).Maes, M. B., Scharpé, S. & De Meester, I. Dipeptidyl peptidase II (DPPII), a review. Clin. Chim. Acta 380, 31–49 (2007).Gibbs, D. J. et al. Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors. Mol. Cell 53, 369–379 (2014).Kitamura, K. Inhibition of the Arg/N-end rule pathway-mediated proteolysis by dipeptide-mimetic molecules. Amino Acids 48, 235–243 (2016).Duek, P. D., Elmer, M. V., van Oosten, V. R. & Fankhauser C. The degradation of HFR1, a putative bHLH class transcription factor involved in light signaling, is regulated by phosphorylation and requires COP1. Curr Biol. 14, 2296–2301 (2004)

    First measurement of the |t|-dependence of coherent J/ψ photonuclear production

    Get PDF
    The first measurement of the cross section for coherent J/ψ photoproduction as a function of |t|, the square of the momentum transferred between the incoming and outgoing target nucleus, is presented. The data were measured with the ALICE detector in ultra-peripheral Pb–Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02TeV with the J/ψ produced in the central rapidity region |y|<0.8, which corresponds to the small Bjorken-x range (0.3−1.4)×10−3. The measured |t|-dependence is not described by computations based only on the Pb nuclear form factor, while the photonuclear cross section is better reproduced by models including shadowing according to the leading-twist approximation, or gluon-saturation effects from the impact-parameter dependent Balitsky–Kovchegov equation. These new results are therefore a valid tool to constrain the relevant model parameters and to investigate the transverse gluonic structure at very low Bjorken-x.publishedVersio

    First measurement of coherent ρ0 photoproduction in ultra-peripheral Xe–Xe collisions at √sNN = 5.44 TeV

    Get PDF
    The first measurement of the coherent photoproduction of ρ0 vector mesons in ultra-peripheral Xe–Xe collisions at sNN=5.44 TeV is presented. This result, together with previous HERA γp data and γ–Pb measurements from ALICE, describes the atomic number (A) dependence of this process, which is particularly sensitive to nuclear shadowing effects and to the approach to the black-disc limit of QCD at a semi-hard scale. The cross section of the Xe+Xe→ρ0+Xe+Xe process, measured at midrapidity through the decay channel ρ0→π+π−, is found to be dσ/dy=131.5±5.6(stat.)−16.9+17.5(syst.) mb. The ratio of the continuum to resonant contributions for the production of pion pairs is also measured. In addition, the fraction of events accompanied by electromagnetic dissociation of either one or both colliding nuclei is reported. The dependence on A of cross section for the coherent ρ0 photoproduction at a centre-of-mass energy per nucleon of the γA system of WγA,n=65 GeV is found to be consistent with a power-law behaviour σ(γA→ρ0A)∝Aα with a slope α=0.96±0.02(syst.). This slope signals important shadowing effects, but it is still far from the behaviour expected in the black-disc limit.publishedVersio

    Particle identification in ALICE : a Bayesian approach

    Get PDF
    Peer reviewe

    Flow Dominance and Factorization of Transverse Momentum Correlations in Pb-Pb Collisions at the LHC

    Get PDF
    We present the first measurement of the two-particle transverse momentum differential correlation function, P2≡ ΔpTΔpT/ pT2, in Pb-Pb collisions at sNN=2.76 TeV. Results for P2 are reported as a function of the relative pseudorapidity (Δη) and azimuthal angle (Δφ) between two particles for different collision centralities. The Δφ dependence is found to be largely independent of Δη for |Δη|≥0.9. In the 5% most central Pb-Pb collisions, the two-particle transverse momentum correlation function exhibits a clear double-hump structure around Δφ=π (i.e., on the away side), which is not observed in number correlations in the same centrality range, and thus provides an indication of the dominance of triangular flow in this collision centrality. Fourier decompositions of P2, studied as a function of the collision centrality, show that correlations at |Δη|≥0.9 can be well reproduced by a flow ansatz based on the notion that measured transverse momentum correlations are strictly determined by the collective motion of the system

    K*(892)(0) and phi(1020)meson production at high transverse momentum in pp and Pb-Pb collisions at root sNN=2.76 TeV

    Get PDF
    The production of K∗(892)0 and φ(1020) mesons in proton-proton (pp) and lead-lead (Pb-Pb) collisions at √sNN = 2.76 TeV has been analyzed using a high luminosity data sample accumulated in 2011 with the ALICE detector at the Large Hadron Collider (LHC). Transverse momentum (pT) spectra have been measured for K∗(892)0 and φ(1020) mesons via their hadronic decay channels for pT up to 20 GeV/c. The measurements in pp collisions have been compared to model calculations and used to determine the nuclear modification factor and particle ratios. The K∗(892)0/K ratio exhibits significant reduction from pp to central Pb-Pb collisions, consistent with the suppression of the K∗(892)0 yield at low pT due to rescattering of its decay products in the hadronic phase. In central Pb-Pb collisions the pT dependent φ(1020)/π and K∗(892)0/π ratios show an enhancement over pp collisions for pT ≈ 3 GeV/c, consistent with previous observations of strong radial flow. At high pT, particle ratios in Pb-Pb collisions are similar to those measured in pp collisions. In central Pb-Pb collisions, the production of K∗(892)0 and φ(1020) mesons is suppressed for pT &gt; 8 GeV/c. This suppression is similar to that of charged pions, kaons, and protons, indicating that the suppression does not depend on particle mass or flavor in the light quark sector

    J/psi production as a function of charged-particle pseudorapidity density in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    We report measurements of the inclusive J/ψ yield and average transverse momentum as a function of charged-particle pseudorapidity density dNch/dη in p–Pb collisions at sNN=5.02TeV with ALICE at the LHC. The observables are normalised to their corresponding averages in non-single diffractive events. An increase of the normalised J/ψ yield with normalised dNch/dη, measured at mid-rapidity, is observed at mid-rapidity and backward rapidity. At forward rapidity, a saturation of the relative yield is observed for high charged-particle multiplicities. The normalised average transverse momentum at forward and backward rapidities increases with multiplicity at low multiplicities and saturates beyond moderate multiplicities. In addition, the forward-to-backward nuclear modification factor ratio is also reported, showing an increasing suppression of J/ψ production at forward rapidity with respect to backward rapidity for increasing charged-particle multiplicity
    corecore