788 research outputs found

    Trapping and ground-state cooling of H2+H_2^+

    Full text link
    We demonstrate co-trapping and sideband cooling of a H2+9Be+H_2^+ - ^9Be^+ ion pair in a cryogenic Paul trap. We study the chemical lifetime of H2+H_2^+ and its dependence on the apparatus temperature, achieving lifetimes of up to 113+6h11^{+6}_{-3} h at 10 K. We demonstrate cooling of translational motion to an average phonon number of 0.07(1), corresponding to a temperature of 22(1)μK22(1)\mu K. Our results provide a basis for quantum logic spectroscopy experiments of H2+H_2^+, as well as other light ions such as HD+HD^+, H3+H_3^+, and He+He^+

    Structure and evolution of super-Earth to super-Jupiter exoplanets: I. heavy element enrichment in the interior

    Get PDF
    We examine the uncertainties in current planetary models and we quantify their impact on the planet cooling histories and mass-radius relationships. These uncertainties include (i) the differences between the various equations of state used to characterize the heavy material thermodynamical properties, (ii) the distribution of heavy elements within planetary interiors, (iii) their chemical composition and (iv) their thermal contribution to the planet evolution. Our models, which include a gaseous H/He envelope, are compared with models of solid, gasless Earth-like planets in order to examine the impact of a gaseous envelope on the cooling and the resulting radius. We find that for a fraction of heavy material larger than 20% of the planet mass, the distribution of the heavy elements in the planet's interior affects substantially the evolution and thus the radius at a given age. For planets with large core mass fractions (\simgr 50%), such as the Neptune-mass transiting planet GJ436b, the contribution of the gravitational and thermal energy from the core to the planet cooling history is not negligible, yielding a \sim 10% effect on the radius after 1 Gyr. We show that the present mass and radius determinations of the massive planet Hat-P-2b require at least 200 \mearth of heavy material in the interior, at the edge of what is currently predicted by the core-accretion model for planet formation. We show that if planets as massive as \sim 25 \mjup can form, as predicted by improved core-accretion models, deuterium is able to burn in the H/He layers above the core, even for core masses as large as \sim 100 \mearth. We provide extensive grids of planetary evolution models from 10 \mearth to 10 MJup_{\rm Jup}, with various fractions of heavy elements.Comment: 20 pages, 12 figures. Accepted for publication in Astronomy and Astrophysic

    A quantum fluid of metallic hydrogen suggested by first-principles calculations

    Full text link
    It is generally assumed that solid hydrogen will transform into a metallic alkali-like crystal at sufficiently high pressure. However, some theoretical models have also suggested that compressed hydrogen may form an unusual two-component (protons and electrons) metallic fluid at low temperature, or possibly even a zero-temperature liquid ground state. The existence of these new states of matter is conditional on the presence of a maximum in the melting temperature versus pressure curve (the 'melt line'). Previous measurements of the hydrogen melt line up to pressures of 44 GPa have led to controversial conclusions regarding the existence of this maximum. Here we report ab initio calculations that establish the melt line up to 200 GPa. We predict that subtle changes in the intermolecular interactions lead to a decline of the melt line above 90 GPa. The implication is that as solid molecular hydrogen is compressed, it transforms into a low-temperature quantum fluid before becoming a monatomic crystal. The emerging low-temperature phase diagram of hydrogen and its isotopes bears analogies with the familiar phases of 3He and 4He, the only known zero-temperature liquids, but the long-range Coulombic interactions and the large component mass ratio present in hydrogen would ensure dramatically different propertiesComment: See related paper: cond-mat/041040

    Guilt is effectively induced by a written auto-biographical essay but not reduced by experimental pain.

    Get PDF
    Introduction The aim of the present study was (1) to validate the method of guilt-induction by means of a written auto-biographical essay and (2) to test whether experimental pain is apt to alleviate the mental burden of guilt, a concept receiving support from both empirical research and clinical observation. Methods Three independent groups of healthy male participants were recruited. Group allocation was not randomized but within group pain/sham administration was counterbalanced over the two test-days. Groups were tested in the following consecutive order: Group A: guilt induction, heat-pain/sham, N = 59; Group B: guilt induction, cold-pressure-pain/sham, N = 43; Group C: emotionally neutral induction, heat-pain/sham, N = 39. Guilt was induced on both test-days in group A and B before pain/sham administration. Visual analog scale (VAS) guilt ratings immediately after pain/sham stimulation served as the primary outcome. In a control group C the identical heat-pain experiment was performed like in group A but a neutral emotional state was induced. Results A consistently strong overall effect of guilt-induction (heat-pain: p < 0.001, effect size r = 0.71; CPT-pain p < 0.001, r = 0.67) was found when compared to the control-condition (p = 0.25, r = 0.08). As expected, heat- and cold-pressure-stimuli were highly painful in all groups (p < 0.0001, r = 0.89). However, previous research supporting the hypothesis that pain is apt to reduce guilt was not replicated. Conclusion Although guilt-induction was highly effective on both test-days no impact of pain on behavioral guilt-ratings in healthy individuals could be identified. Guilt induction per se did not depend on the order of testing. The result questions previous experimental work on the impact of pain on moral emotions

    When the world collapses : Changed worldview and social reconstruction in a traumatized community

    Get PDF
    Background: Traumatic experience can affect the individual’s basic beliefs about the world as a predictable and safe place. One of the cornerstones in recovery from trauma is reestablishment of safety, connectedness, and the shattered schema of a worldview. Objective: This study explored the role of negatively changed worldview in the relationship between war-related traumatization and readiness for social reconstruction of intergroup relations in a post-conflict community measured by three processes: intergroup rapprochement, rebuilding trust, and need for apology. It was hypothesized that more traumatized people are less supportive of social reconstruction and that this relationship is mediated by the changed worldview. Method: The study included a community random sample of 333 adults in the city of Vukovar, Croatia, that was most devastated during the 1991–1995 war. Six instruments were administered: Stressful Events Scale, Impact of Event Scale-Revised, Changed Worldview Scale, and three scales measuring the post-conflict social reconstruction processes: Intergroup Rapprochement, Intergroup Trust and Need for Apology. Results: Mediation analyses showed that the worldview change fully mediated between traumatization and all three aspects of social reconstruction. Conclusions: In a population exposed to war traumatization the worldview change mediates post-conflict social recovery of community relations

    A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry

    Get PDF
    We present here a review of the fundamental topics of Hartree-Fock theory in Quantum Chemistry. From the molecular Hamiltonian, using and discussing the Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock equations for the electronic problem. Special emphasis is placed in the most relevant mathematical aspects of the theoretical derivation of the final equations, as well as in the results regarding the existence and uniqueness of their solutions. All Hartree-Fock versions with different spin restrictions are systematically extracted from the general case, thus providing a unifying framework. Then, the discretization of the one-electron orbitals space is reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition of the basic underlying concepts related to the construction and selection of Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we close the review with a section in which the most relevant modern developments (specially those related to the design of linear-scaling methods) are commented and linked to the issues discussed. The whole work is intentionally introductory and rather self-contained, so that it may be useful for non experts that aim to use quantum chemical methods in interdisciplinary applications. Moreover, much material that is found scattered in the literature has been put together here to facilitate comprehension and to serve as a handy reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and subeqn package

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Measurement of the flavour composition of dijet events in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the flavour composition of dijet events produced in pp collisions at &#8730;s=7 TeV using the ATLAS detector. The measurement uses the full 2010 data sample, corresponding to an integrated luminosity of 39 pb−1. Six possible combinations of light, charm and bottom jets are identified in the dijet events, where the jet flavour is defined by the presence of bottom, charm or solely light flavour hadrons in the jet. Kinematic variables, based on the properties of displaced decay vertices and optimised for jet flavour identification, are used in a multidimensional template fit to measure the fractions of these dijet flavour states as functions of the leading jet transverse momentum in the range 40 GeV to 500 GeV and jet rapidity |y|&#60;2.1. The fit results agree with the predictions of leading- and next-to-leading-order calculations, with the exception of the dijet fraction composed of bottom and light flavour jets, which is underestimated by all models at large transverse jet momenta. The ability to identify jets containing two b-hadrons, originating from e.g. gluon splitting, is demonstrated. The difference between bottom jet production rates in leading and subleading jets is consistent with the next-to-leading-order predictions
    corecore