29 research outputs found

    Taking a Breath of the Wild: are geoscientists more effective than non-geoscientists in determining whether video game world landscapes are realistic?

    Get PDF
    From the wilderness of Hyrule, the continent of Tamriel, and the geographies of Middle Earth, players of video games are exposed to wondrous, fantastic, but ultimately fake, landscapes. Given the time people may spend in these worlds compared to the time they spend being trained in geoscience, we wondered whether expert geoscientists would differ from non-geoscientists in whether they judge the landscapes in these video games to be “realistic”. Since video games present a great opportunity for tangential learning, it would be a missed opportunity if it turns out that features obviously fake to geoscientists are perceived as plausible by non-geoscientists.To satisfy our curiosity and answer this question, we conducted a survey where we asked people to judge both photos from real landscapes as well as screenshots from the recent The Legend of Zelda: Breath of the Wild video game on how likely they thought the features in the picture were to exist in the real world. Since game world screenshots are easily identified based on their rendered, pixelated nature, we pre-processed all pictures with an artistic “Van Gogh” filter that removed the rendered nature but retained the dominant landscape features.We found that there is a small but significant difference between geoscientists and non-geoscientists, with geoscientists being slightly better at judging which pictures are from the real world versus from the video game world. While significant, the effect is small enough to conclude that fantastical worlds in video games can be used for tangential learning on geoscientific subjects

    Coupling a global glacier model to a global hydrological model prevents underestimation of glacier runoff

    Get PDF
    Global hydrological models have become a valuable tool for a range of global impact studies related to water resources. However, glacier parameterization is often simplistic or non-existent in global hydrological models. By contrast, global glacier models do represent complex glacier dynamics and glacier evolution, and as such, they hold the promise of better resolving glacier runoff estimates. In this study, we test the hypothesis that coupling a global glacier model with a global hydrological model leads to a more realistic glacier representation and, consequently, to improved runoff predictions in the global hydrological model. To this end, the Global Glacier Evolution Model (GloGEM) is coupled with the PCRaster GLOBal Water Balance model, version 2.0 (PCR-GLOBWB 2), using the eWaterCycle platform. For the period 2001–2012, the coupled model is evaluated against the uncoupled PCR-GLOBWB 2 in 25 large-scale (>50 000 km2), glacierized basins. The coupled model produces higher runoff estimates across all basins and throughout the melt season. In summer, the runoff differences range from 0.07 % for weakly glacier-influenced basins to 252 % for strongly glacier-influenced basins. The difference can primarily be explained by PCR-GLOBWB 2 not accounting for glacier flow and glacier mass loss, thereby causing an underestimation of glacier runoff. The coupled model performs better in reproducing basin runoff observations mostly in strongly glacier-influenced basins, which is where the coupling has the most impact. This study underlines the importance of glacier representation in global hydrological models and demonstrates the potential of coupling a global hydrological model with a global glacier model for better glacier representation and runoff predictions in glacierized basins

    Flooded by jargon: how the interpretation of water-related terms differs between hydrology experts and the general audience

    Get PDF
    Communication about hydrology-induced hazards is important, in order to keep the impact of floods, droughts et cetera as low as possible. However, sometimes the boundary between specialized and non-specialized language can be vague. Therefore, a close scrutiny of the use of hydrological vocabulary by both experts and laypeople is necessary. In this study, we compare the expert and lay definitions of 12 common water-related terms and 10 water-related pictures to see where misunderstandings might arise both in text and pictures. Our primary objective is to analyze the degree of agreement between experts and laypeople in their definition of the used terms. In this way, we hope to contribute to improving the communication between these groups in the future. Our study was based on a survey completed by 34 experts and 119 laypeople. Especially concerning the definition of water-related words there are some profound differences between experts and laypeople: words like river and river basin turn out to have a thoroughly different interpretation between the two groups. Concerning the pictures, there is much more agreement between the groups

    HESS Opinions: Science in today's media landscape – challenges and lessons from hydrologists and journalists

    Get PDF
    Media such as television, newspapers and social media play a key role in the communication between scientists and the general public. Communicating your science via the media can be positive and rewarding by providing the inherent joy of sharing your knowledge with a broader audience, promoting science as a fundamental part of culture and society, impacting decision and policy makers, and giving you a greater recognition by institutions, colleagues and funders. However, the interaction between scientists and journalists is not always straightforward. For instance, scientists may not always be able to translate their work into a compelling story, and journalists may sometimes misinterpret scientific output. In this paper, we present insights from hydrologists and journalists discussing the advantages and benefits as well as the potential pitfalls and aftermath of science-media interaction. As we perceive interacting with the media as a rewarding and essential part of our work, we aim to encourage scientists to participate in the diverse and evolving media landscape. With this paper, we call on the scientific community to support scientists who actively contribute to a fruitful science-media relationship

    Open weather and climate science in the digital era

    Get PDF
    The need for open science has been recognized by the communities of meteorology and climate science. While these domains are mature in terms of applying digital technologies, the implementation of open science methodologies is less advanced. In a session on “Weather and Climate Science in the Digital Era” at the 14th IEEE International eScience Conference domain specialists and data and computer scientists discussed the road towards open weather and climate science. Roughly 80 % of the studies presented in the conference session showed the added value of open data and software. These studies included open datasets from disparate sources in their analyses or developed tools and approaches that were made openly available to the research community. Furthermore, shared software is a prerequisite for the studies which presented systems like a model coupling framework or digital collaboration platform. Although these studies showed that sharing code and data is important, the consensus among the participants was that this is not sufficient to achieve open weather and climate science and that there are important issues to address. At the level of technology, the application of the findable, accessible, interoperable, and reusable (FAIR) principles to many datasets used in weathe

    Is Earth special?

    Get PDF

    Taking a Breath of the Wild

    No full text
    Data and analysis script for the paper by Hut, Albers, Illingworth & Skinne

    eWaterCycle patched version of OpenDA

    No full text
    This is a copy of the slightly patched version of OpenDA used in the eWaterCycle project. It is recommended to use the official version of OpenDA whenever possible (see openda.org

    Flooded by jargon

    No full text
    Flooded by jargon: how the interpretation of water-related terms differs between hydrology experts and the general audienc
    corecore