1,301 research outputs found

    Impact of Community-Based Larviciding on the Prevalence of Malaria Infection in Dar es Salaam, Tanzania.

    Get PDF
    The use of larval source management is not prioritized by contemporary malaria control programs in sub-Saharan Africa despite historical success. Larviciding, in particular, could be effective in urban areas where transmission is focal and accessibility to Anopheles breeding habitats is generally easier than in rural settings. The objective of this study is to assess the effectiveness of a community-based microbial larviciding intervention to reduce the prevalence of malaria infection in Dar es Salaam, United Republic of Tanzania. Larviciding was implemented in 3 out of 15 targeted wards of Dar es Salaam in 2006 after two years of baseline data collection. This intervention was subsequently scaled up to 9 wards a year later, and to all 15 targeted wards in 2008. Continuous randomized cluster sampling of malaria prevalence and socio-demographic characteristics was carried out during 6 survey rounds (2004-2008), which included both cross-sectional and longitudinal data (N = 64,537). Bayesian random effects logistic regression models were used to quantify the effect of the intervention on malaria prevalence at the individual level. Effect size estimates suggest a significant protective effect of the larviciding intervention. After adjustment for confounders, the odds of individuals living in areas treated with larviciding being infected with malaria were 21% lower (Odds Ratio = 0.79; 95% Credible Intervals: 0.66-0.93) than those who lived in areas not treated. The larviciding intervention was most effective during dry seasons and had synergistic effects with other protective measures such as use of insecticide-treated bed nets and house proofing (i.e., complete ceiling or window screens). A large-scale community-based larviciding intervention significantly reduced the prevalence of malaria infection in urban Dar es Salaam

    The yeast P5 type ATPase, Spf1, regulates manganese transport into the endoplasmic reticulum

    Get PDF
    The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn2+ homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn2+ in ∆spf1 cells and an increase following it’s overexpression. In agreement with the observed loss of luminal Mn2+ we could observe concurrent reduction in many Mn2+-related process in the ER lumen. Conversely, cytosolic Mn2+-dependent processes were increased. Together, these data support a role for Spf1p in Mn2+ transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn2+-dependent neurological disorders

    Wanted dead or alive : high diversity of macroinvertebrates associated with living and ’dead’ Posidonia oceanica matte

    Get PDF
    The Mediterranean endemic seagrass Posidonia oceanica forms beds characterised by a dense leaf canopy and a thick root-rhizome ‘matte’. Death of P. oceanica shoots leads to exposure of the underlying matte, which can persist for many years, and is termed ‘dead’ matte. Traditionally, dead matte has been regarded as a degraded habitat. To test whether this assumption was true, the motile macroinvertebrates of adjacent living (with shoots) and dead (without shoots) matte of P. oceanica were sampled in four different plots located at the same depth (5–6 m) in Mellieha Bay, Malta (central Mediterranean). The total number of species and abundance were significantly higher (ANOVA; P<0.05 and P<0.01, respectively) in the dead matte than in living P. oceanica matte, despite the presence of the foliar canopy in the latter. Multivariate analysis (MDS) clearly showed two main groups of assemblages, corresponding to the two matte types. The amphipods Leptocheirus guttatus and Maera grossimana, and the polychaete Nereis rava contributed most to the dissimilarity between the two different matte types. Several unique properties of the dead matte contributing to the unexpected higher number of species and abundance of motile macroinvertebrates associated with this habitat are discussed. The findings have important implications for the conservation of bare P. oceanica matte, which has been generally viewed as a habitat of low ecological value.peer-reviewe

    Perinatal mental ill health - the experiences of women from ethnic minority groups

    Get PDF
    This study aimed to investigate ethnic minority women’s experiences and opinions of perinatal mental health problems and the provision of perinatal mental health support services. An exploratory survey was undertaken using a questionnaire. Quantitative data were analysed using descriptive statistics and a simple thematic analysis was used for the qualitative data. A total of 51 responses from women of 14 different ethnic minority backgrounds were analysed. Women from minority ethnic groups face barriers to seeking help for perinatal mental ill health as a result of ongoing stigma and the poor attitudes and behaviours of health professionals and inappropriately designed services. Future interventions should focus on providing adequate cultural competency for health care professionals and ensure that all women are able to access culturally appropriate spaces to talk and be listened to within community settings and wider services

    Physicochemical and biological characterization of chitosan-microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells

    Get PDF
    Cancer gene therapy requires the design of non-viral vectors that carry genetic material and selectively deliver it with minimal toxicity. Non-viral vectors based on cationic natural polymers can form electrostatic complexes with negatively-charged polynucleotides such as microRNAs (miRNAs). Here we investigated the physicochemical/biophysical properties of chitosan–hsa-miRNA-145 (CS–miRNA) nanocomplexes and the biological responses of MCF-7 breast cancer cells cultured in vitro. Self-assembled CS–miRNA nanocomplexes were produced with a range of (+/−) charge ratios (from 0.6 to 8) using chitosans with various degrees of acetylation and molecular weight. The Z-average particle diameter of the complexes was <200 nm. The surface charge increased with increasing amount of chitosan. We observed that chitosan induces the base-stacking of miRNA in a concentration dependent manner. Surface plasmon resonance spectroscopy shows that complexes formed by low degree of acetylation chitosans are highly stable, regardless of the molecular weight. We found no evidence that these complexes were cytotoxic towards MCF-7 cells. Furthermore, CS–miRNA nanocomplexes with degree of acetylation 12% and 29% were biologically active, showing successful downregulation of target mRNA expression in MCF-7 cells. Our data, therefore, shows that CS–miRNA complexes offer a promising non-viral platform for breast cancer gene therapy

    Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    Full text link
    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics Review"; The final publication is available at http://www.springerlink.co

    The effect of graphite and carbon black ratios on conductive ink performance

    Get PDF
    Conductive inks based on graphite and carbon black are used in a host of applications including energy storage, energy harvesting, electrochemical sensors and printed heaters. This requires accurate control of electrical properties tailored to the application; ink formulation is a fundamental element of this. Data on how formulation relates to properties have tended to apply to only single types of conductor at any time, with data on mixed types of carbon only empirical thus far. Therefore, screen printable carbon inks with differing graphite, carbon black and vinyl polymer content were formulated and printed to establish the effect on rheology, deposition and conductivity. The study found that at a higher total carbon loading ink of 29.4% by mass, optimal conductivity (0.029 Ω cm) was achieved at a graphite to carbon black ratio of 2.6 to 1. For a lower total carbon loading (21.7 mass %), this ratio was reduced to 1.8 to 1. Formulation affected viscosity and hence ink transfer and also surface roughness due to retention of features from the screen printing mesh and the inherent roughness of the carbon components, as well as the ability of features to be reproduced consistently

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
    corecore