73 research outputs found

    Effect of cylinder de-activation on the tribological performance of compression ring conjunction

    Get PDF
    The paper presents transient thermal-mixed-hydrodynamics of piston compression ring-cylinder liner conjunction for a 4-cylinder 4-stroke gasoline engine during a part of the New European Drive Cycle (NEDC). Analyses are carried out with and without cylinder de-activation (CDA) technology in order to investigate its effect upon the generated tribological conditions. In particular, the effect of CDA upon frictional power loss is studied. The predictions show that overall power losses in the piston-ring cylinder system worsen by as much as 10% because of the increased combustion pressures and liner temperatures in the active cylinders of an engine operating under CDA. This finding shows the down-side of this progressively employed technology, which otherwise is effective in terms of combustion efficiency with additional benefits for operation of catalytic converters. The expounded approach has not hitherto been reported in literature

    Characterizing, modelling and understanding the climate variability of the deep water formation in the North-Western Mediterranean Sea

    Get PDF
    Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980–2013 and a detailed multi-indicator description of the period 2007–2013. Then a 1980–2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies

    Overturning in the Subpolar North Atlantic Program: A New International Ocean Observing System

    Get PDF
    For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017

    Surface specific asperity model for prediction of friction in boundary and mixed regimes of lubrication

    Get PDF
    Machine downsizing, increased loading and better sealing performance have progressively led to thinner lubricant films and an increased chance of direct surface interaction. Consequently, mixed and boundary regimes of lubrication are prevalent with ubiquitous asperity interactions, leading to increased parasitic losses and poor energy inefficiency. Surface topography has become an important consideration as it influences the prevailing regime of lubrication. As a result a plethora of machining processes and surface finishing techniques have emerged. The stochastic nature of the resulting topography determines the separation at which asperity interactions are initiated and ultimately affect the conjunctional load carrying capacity and operational efficiency. The paper presents a procedure for modelling of asperity interactions of real rough surfaces, from measured data, which do not conform to the usually assumed Gaussian distributions. The model is validated experimentally using a bench top reciprocating sliding test rig. The method demonstrates accurate determination of the onset of mixed regime of lubrication. In this manner, realistic predictions are made for load carrying and frictional performance in real applications where commonly used Gaussian distributions can lead to anomalous predictions

    Multiscale friction in lubricant-surface systems for high performance transmissions under mild wear

    Get PDF
    The lubricant-surface system is complex in nature and can significantly affect the frictional performance of high-performance transmission systems. The complexity stems from the coupled mechanical and chemical phenomena that occur at the interfacial tooth conjunctions. A combined analytical and precision experimental approach is presented to analyse the salient parameters of the lubricant-surface system. A multiscale procedure comprising topographical measurement, pin-on-disc tribometry, atomic force microscopy in lateral force mode, X-ray photo-electron spectroscopy and continuum contact mechanics analysis under mixed non-Newtonian thermo-elastohydrodynamics is used to describe the formation of a tribo-film, as well as wear and frictional characteristics of the lubricant-surface system. The contribution of chemisorbed and physisorbed bonded tribo-film on the boundary coefficient of friction is ascertained at different physical scales. Therefore, the paper presents a novel multiscale analysis, promoting improved understanding of the complex interactions between mechanisms of friction, wear and surface chemistry

    An analytical approach for prediction of elastohydrodynamic friction with inlet shear heating and starvation

    Get PDF
    An analytical friction model is presented, predicting the coefficient of friction in elastohydrodynamic (EHD) contacts. Three fully formulated SAE 75W-90 axle lubricants are examined. The effect of inlet shear heating (ISH) and starvation is accounted for in the developed friction model. The film thickness and the predicted friction are compared with experimental measurements obtained through optical interferometry and use of a mini traction machine. The results indicate the significant contribution of ISH and starvation on both the film thickness and coefficient of friction. A strong interaction between those two phenomena is also demonstrated, along with their individual and combined contribution on the EHD friction

    Effect of cylinder deactivation on tribological performance of piston compression ring and connecting rod bearing

    Get PDF
    Thermo-mixed-hydrodynamics of compression rings and big-end bearings are presented. Frictional losses under normal engine operating conditions for a gasoline engine and those with cylinder deactivation (CDA) are predicted. With CDA, the combustion chamber pressure increases in the active cylinders, whilst some residual pressure remains in the deactivated ones. For the former, the increased in-cylinder temperatures reduce viscous friction, whilst reducing the load carrying capacity, promoting increased boundary interactions. In deactivated cylinders, lower contact temperatures yield increased viscous friction. Overall, a 5% improvement in expended fuel is expected with the application of CDA. However, 10% of these gains are expended due to increased friction. The study demonstrates the need to consider total system effects when introducing new technologies such as CDA

    Thermo-Mixed Hydrodynamics of Piston Compression Ring Conjunction

    Get PDF
    The final publication is available at http://link.springer.com.A new method, comprising Navier-Stokes equations, Rayleigh-Plesset volume fraction equation, an analytical control-volume thermal mixed approach and asperity interactions is reported. The method is employed for prediction of lubricant flow and assessment of friction in the compression ring-cylinder liner conjunction. The results are compared with Reynolds-based laminar flow with Elrod cavitation algorithm. Good conformance is observed for medium load intensity part of the engine cycle. At lighter loads and higher sliding velocity, the new method shows more complex fluid flow, possessing layered flow characteristics on account of pressure and temperature gradient into the depth of the lubricant film, which leads to a cavitation region with vapour content at varied volume fractions. Predictions also conform well to experimental measurements reported by other authors

    Subpolar North Atlantic western boundary density anomalies and the Meridional Overturning Circulation

    Get PDF
    Changes in the Atlantic Meridional Overturning Circulation, which have the potential to drive societally-important climate impacts, have traditionally been linked to the strength of deep water formation in the subpolar North Atlantic. Yet there is neither clear observational evidence nor agreement among models about how changes in deep water formation influence overturning. Here, we use data from a trans-basin mooring array (OSNAP—Overturning in the Subpolar North Atlantic Program) to show that winter convection during 2014–2018 in the interior basin had minimal impact on density changes in the deep western boundary currents in the subpolar basins. Contrary to previous modeling studies, we find no discernable relationship between western boundary changes and subpolar overturning variability over the observational time scales. Our results require a reconsideration of the notion of deep western boundary changes representing overturning characteristics, with implications for constraining the source of overturning variability within and downstream of the subpolar region
    corecore