16 research outputs found

    Snatch trajectory of elite level girevoy (Kettlebell) sport athletes and its implications to strength and conditioning coaching

    Get PDF
    Girevoy sport (GS) has developed only recently in the West, resulting in a paucity of English scientific literature available. The aim was to document kettlebell trajectory of GS athletes performing the kettlebell snatch. Four elite GS athletes (age = 29-47 years, body mass = 68.3-108.1 kg, height 1.72-1.89 m) completed one set of 16 repetitions with a 32.1 kg kettlebell. Trajectory was captured with the VICON motion analysis system (250 Hz) and analysed with VICON Nexus (1.7.1). The kettlebell followed a ‘C’ shape trajectory in the sagittal plane. Mean peak velocity in the upwards phase was 4.03 ± 0.20 m s –1, compared to 3.70 ± 0.30 m s–1 during the downwards phase, and mean radial error across the sagittal and frontal planes was 0.022 ± 0.006 m. Low error in the movement suggests consistent trajectory is important to reduce extraneous movement and improve efficiency. While the kettlebell snatch and swing both require large anterior-posterior motion, the snatch requires the kettlebell to be held stationary overhead. Therefore, a different coaching application is required to that of a barbell snatch

    Immobilized enzyme/microorganism complexes for degradation of microplastics: A review of recent advances, feasibility and future prospects

    Get PDF
    Environmental prevalence of microplastics has prompted the development of novel methods for their removal, one of which involves immobilization of microplastics-degrading enzymes. Various materials including nanomaterials have been studied for this purpose but there is currently a lack of review to present these studies in an organized manner to highlight the advances and feasibility. This article reviewed more than 100 peer-reviewed scholarly papers to elucidate the latest advances in the novel application of immobilized enzyme/microorganism complexes for microplastics degradation, its feasibility and future prospects. This review shows that metal nanoparticle-enzyme complexes improve biodegradation of microplastics in most studies through creating photogenerated radicals to facilitate polymer oxidation, accelerating growth of bacterial consortia for biodegradation, anchoring enzymes and improving their stability, and absorbing water for hydrolysis. In a study, the antimicrobial property of nanoparticles retarded the growth of microorganisms, hence biodegradation. Carbon particle-enzyme complexes enable enzymes to be immobilized on carbon-based support or matrix through covalent bonding, adsorption, entrapment, encapsulation, and a combination of the mechanisms, facilitated by formation of cross-links between enzymes. These complexes were shown to improve microplastics-degrading efficiency and recyclability of enzymes. Other emerging nanoparticles and/or enzymatic technologies are fusion of enzymes with hydrophobins, polymer binding module, peptide and novel nanoparticles. Nonetheless, the enzymes in the complexes present a limiting factor due to limited understanding of the degradation mechanisms. Besides, there is a lack of studies on the degradation of polypropylene and polyvinyl chloride. Genetic bioengineering and metagenomics could provide breakthrough in this area. This review highlights the optimism of using immobilized enzymes/microorganisms to increase the efficiency of microplastics degradation but optimization of enzymatic or microbial activities and synthesis of immobilized enzymes/microorganisms are crucial to overcome the barriers to their wide application

    Technologies for removing pharmaceuticals and personal care products (PPCPs) from aqueous solutions: Recent advances, performances, challenges and recommendations for improvements

    Get PDF
    In recent years, the removal of pharmaceutical and personal care products (PPCPs) from aqueous solutions has been gaining a lot of attention from researchers throughout the world. This is particularly due to the concern about their potential hazards and toxicities, as they are classified as emerging contaminants. Thus, there is an increasing need to investigate removal technologies for PPCPs at a deeper and more holistic level. This review aims to provide the latest developments in removal technologies for PPCPs. It first succinctly describes the types, characteristics, and hazards of PPCPs on the environment and human health. It then comprehensively covers a wide range of technologies for removing PPCPs from aqueous solutions, comprising the adsorption process (using carbon-based adsorbents, plant biomasses, clay and clay minerals, silica-based adsorbents, zeolite-based adsorbents, polymers and resins, and hybrid adsorbents), advanced oxidation processes (AOPs) (photocatalysis, Fenton or photo-Fenton or electro-Fenton, ozonation, ultrasonication, electrochemical oxidation, persulfate oxidation), membrane separation processes (ultrafiltration, nanofiltration, reverse osmosis), biodegradation processes (bacteria, fungi, and algae), and hybrid treatment (adsorption-AOP, AOP-membrane, membrane-biodegradation, and others). According to the specific experimental conditions, the reported removal efficiencies for adsorption, AOPs, membrane processes, biodegradation processes and hybrid treatment were 40–100%, 40–100%, 3–100%, 14–100% and 5–100%, respectively. This review paper also highlights the challenges in this field of research, particularly incomplete removal of certain PPCPs, high costs of some treatment technologies and generally insufficient understanding on the removal kinetics and mechanisms of PPCPs. This review offers recommendations for future works to further advance the technical performances to eventually realize the wider application of these technologies at the industrial scale

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Immobilized enzyme/microorganism complexes for degradation of microplastics: A review of recent advances, feasibility and future prospects

    No full text
    Environmental prevalence of microplastics has prompted the development of novel methods for their removal, one of which involves immobilization of microplastics-degrading enzymes. Various materials including nanomaterials have been studied for this purpose but there is currently a lack of review to present these studies in an organized manner to highlight the advances and feasibility. This article reviewed more than 100 peer-reviewed scholarly papers to elucidate the latest advances in the novel application of immobilized enzyme/microorganism complexes for microplastics degradation, its feasibility and future prospects. This review shows that metal nanoparticle-enzyme complexes improve biodegradation of microplastics in most studies through creating photogenerated radicals to facilitate polymer oxidation, accelerating growth of bacterial consortia for biodegradation, anchoring enzymes and improving their stability, and absorbing water for hydrolysis. In a study, the antimicrobial property of nanoparticles retarded the growth of microorganisms, hence biodegradation. Carbon particle-enzyme complexes enable enzymes to be immobilized on carbon-based support or matrix through covalent bonding, adsorption, entrapment, encapsulation, and a combination of the mechanisms, facilitated by formation of cross-links between enzymes. These complexes were shown to improve microplastics-degrading efficiency and recyclability of enzymes. Other emerging nanoparticles and/or enzymatic technologies are fusion of enzymes with hydrophobins, polymer binding module, peptide and novel nanoparticles. Nonetheless, the enzymes in the complexes present a limiting factor due to limited understanding of the degradation mechanisms. Besides, there is a lack of studies on the degradation of polypropylene and polyvinyl chloride. Genetic bioengineering and metagenomics could provide breakthrough in this area. This review highlights the optimism of using immobilized enzymes to increase the efficiency of microplastics degradation but optimization of enzymatic activities and synthesis of immobilized enzymes are crucial to overcome the barriers to their wide application

    Safety and Immunogenicity of Inactivated Bacillus subtilis Spores as a Heterologous Antibody Booster for COVID-19 Vaccines

    No full text
    The coronavirus diseases 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have threatened the world for more than 2 years. Multiple vaccine candidates have been developed and approved for emergency use by specific markets, but multiple doses are required to maintain the antibody level. Preliminary safety and immunogenicity data about an oral dose vaccine candidate using recombinant Bacillus subtilis in healthy adults were reported previously from an investigator-initiated trial in Hong Kong. Additional data are required in order to demonstrate the safety and efficacy of the candidate as a heterologous booster in vaccinated recipients. In an ongoing, placebo-controlled, observer-blinded, fixed dose, investigator-initiated trial conducted in the Macau, we randomly assigned healthy adults, 21 to 62 years of age to receive either placebo or a Bacillus subtilis oral dose vaccine candidate, which expressed the spike protein receptor binding domain of SARS-CoV-2 on the spore surface. The primary outcome was safety (e.g., local and systemic reactions and adverse events); immunogenicity was a secondary outcome. For both the active vaccine and placebo, participants received three courses in three consecutive days. A total of 16 participants underwent randomization: 9 participants received vaccine and 7 received placebo. No observable local or systemic side-effect was reported. In both younger and older adults receiving placebo, the neutralizing antibody levels were gradually declining, whereas the participants receiving the antibody booster showed an increase in neutralizing antibody level

    Technologies for removing pharmaceuticals and personal care products (PPCPs) from aqueous solutions: Recent advances, performances, challenges and recommendations for improvements

    No full text
    In recent years, the removal of pharmaceutical and personal care products (PPCPs) from aqueous solutions has been gaining a lot of attention from researchers throughout the world. This is particularly due to the concern about their potential hazards and toxicities, as they are classified as emerging contaminants. Thus, there is an increasing need to investigate removal technologies for PPCPs at a deeper and more holistic level. This review aims to provide the latest developments in removal technologies for PPCPs. It first succinctly describes the types, characteristics, and hazards of PPCPs on the environment and human health. It then comprehensively covers a wide range of technologies for removing PPCPs from aqueous solutions, comprising the adsorption process (using carbon-based adsorbents, plant biomasses, clay and clay minerals, silica-based adsorbents, zeolite-based adsorbents, polymers and resins, and hybrid adsorbents), advanced oxidation processes (AOPs) (photocatalysis, Fenton or photo-Fenton or electro-Fenton, ozonation, ultrasonication, electrochemical oxidation, persulfate oxidation), membrane separation processes (ultrafiltration, nanofiltration, reverse osmosis), biodegradation processes (bacteria, fungi, and algae), and hybrid treatment (adsorption-AOP, AOP-membrane, membrane-biodegradation, and others). According to the specific experimental conditions, the reported removal efficiencies for adsorption, AOPs, membrane processes, biodegradation processes and hybrid treatment were 40–100%, 40–100%, 3–100%, 14–100% and 5–100%, respectively. This review paper also highlights the challenges in this field of research, particularly incomplete removal of certain PPCPs, high costs of some treatment technologies and generally insufficient understanding on the removal kinetics and mechanisms of PPCPs. This review offers recommendations for future works to further advance the technical performances to eventually realize the wider application of these technologies at the industrial scale.</p
    corecore