132 research outputs found

    When Will U.S. Firms Become Major Dairy Exporters and Bigger Direct Investors in Foreign Dairy-Food Businesses?

    Get PDF
    The prospects for substantially expanded dairy exports by U.S. firms are not bright for at least the current decade. The exceptions relate to exports of dried whey, whey fractions, dairy blends, selected specialty dairy products and nonfat dry milk. U.S. dairy exports are likely to continue to be low because U.S. prices for bulk dairy products are sharply higher than world prices. Unlike the situation for dairy exporting, the barriers to foreign direct investment by U.S. firms appear less daunting. The prevalence of successful foreign direct investments by the foreign firms described here suggests that a larger number of U.S. firms could engage in such investments successfully.U.S. Dairy Exports, Foreign Direct Investment, U.S. Dairy Firms, Demand and Price Analysis, Industrial Organization, International Relations/Trade,

    Modeling Diel Vertical Migration with Membrane Computing

    Get PDF
    Diel vertical migration (DVM) is an important ecological phenomenon in which zooplankton migrate vertically to deal with trade-offs associated with greater food availability in shallow waters and lower predator risk in deep waters due to lower light availability. Because of these trade-offs, DVM dynamics are particularly sensitive to changes in light intensity at the water surface. Therefore, changes in the proportion of cloudy and sunny days have the potential to disrupt DVM dynamics. We propose a new membrane computing model that captures the effect of cloud cover on DVM in Daphnia, and we use it to explore the impacts of an increased proportion of cloudy days that are predicted to occur with climate change. Our 2-dimensional, spatially explicit model integrates multiple trophic levels from abiotic nutrients to Daphnia predators. We analyzed the effect that different proportions of cloudy and sunny days throughout the summer have on our model. The model simulations suggest that an increase in sunny days promotes a high phytoplankton concentration near the surface but does not necessarily promote an increased abundance of Daphnia. Our model also suggests that a higher proportion of cloudy days would increase Daphnia abundance due to a shift in the vertical distribution of Daphnia populations towards superficial waters. Our results highlight that climate changes in multiple regions will affect animal migrations leading to altered food web dynamics in freshwater ecosystems, and emphasize the potential of membrane computing as a modeling framework for spatially and temporally explicit ecological processes

    Using Pectoral Fin Rays as a Non-lethal Aging Structure for Smallmouth Bass: Precision with Otolith Age Estimates and the Importance of Reader Experience

    Get PDF
    We evaluated the potential utility of pectoral fin rays as non-lethal aging structures for smallmouth bass (Micropterus dolomieu). We compared age estimates among three reading pairs and against sectioned sagittal otolith age estimates for precision. Reading pair bias was not detected, although the highest rates of age estimate agreement occurred between reading pairs with high and moderate aging experience. Precision of otolith and fin ray age estimates were equivalent based on between-structure comparisons of average percent error and coefficient of variation. However, fin rays underestimated fish age compared to otoliths for older fish, especially when aged by less-experienced readers. Pectoral fin rays may provide a non-lethal alternative to otoliths for aging smallmouth bass, particularly for younger fish (≤age 4) or when experienced readers conduct aging. Additional evaluations of fin rays as smallmouth bass aging structures are needed, including validation using known-age fish and documentation of consistent annulus formation throughout a fish’s life

    Lake salinization drives consistent losses of zooplankton abundance and diversity across coordinated mesocosm experiments

    Get PDF
    Human-induced salinization increasingly threatens inland waters; yet we know little about the multifaceted response of lake communities to salt contamination. By conducting a coordinated mesocosm experiment of lake salinization across 16 sites in North America and Europe, we quantified the response of zooplankton abundance and (taxonomic and functional) community structure to a broad gradient of environmentally relevant chloride concentrations, ranging from 4 to ca. 1400 mg Cl- L-1. We found that crustaceans were distinctly more sensitive to elevated chloride than rotifers; yet, rotifers did not show compensatory abundance increases in response to crustacean declines. For crustaceans, our among-site comparisons indicate: (1) highly consistent decreases in abundance and taxon richness with salinity; (2) widespread chloride sensitivity across major taxonomic groups (Cladocera, Cyclopoida, and Calanoida); and (3) weaker loss of functional than taxonomic diversity. Overall, our study demonstrates that aggregate properties of zooplankton communities can be adversely affected at chloride concentrations relevant to anthropogenic salinization in lakes.Peer reviewe

    Widespread variation in salt tolerance within freshwater zooplankton species reduces the predictability of community-level salt tolerance

    Get PDF
    The salinization of freshwaters is a global threat to aquatic biodiversity. We quantified variation in chloride (Cl-) tolerance of 19 freshwater zooplankton species in four countries to answer three questions: (1) How much variation in Cl- tolerance is present among populations? (2) What factors predict intraspecific variation in Cl- tolerance? (3) Must we account for intraspecific variation to accurately predict community Cl- tolerance? We conducted field mesocosm experiments at 16 sites and compiled acute LC(50)s from published laboratory studies. We found high variation in LC(50)s for Cl- tolerance in multiple species, which, in the experiment, was only explained by zooplankton community composition. Variation in species-LC50 was high enough that at 45% of lakes, community response was not predictable based on species tolerances measured at other sites. This suggests that water quality guidelines should be based on multiple populations and communities to account for large intraspecific variation in Cl- tolerance.Peer reviewe

    Current water quality guidelines across North America and Europe do not protect lakes from salinization

    Get PDF
    Human-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization-indicated as elevated chloride (C-) concentration-will affect lake food webs and if two of the lowest Cl- thresholds found globally are sufficient to protect these food webs. Our results indicated that salinization will cause substantial zooplankton mortality at the lowest Cl- thresholds established in Canada (120 mg Cl-/L) and the United States (230 mg Cl-/L) and throughout Europe where Cl- thresholds are generally higher. For instance, at 73% of our study sites, Cl- concentrations that caused a >= 50% reduction in cladoceran abundance were at or below Cl thresholds in Canada, in the United States, and throughout Europe. Similar trends occurred for copepod and rotifer zooplankton. The loss of zooplankton triggered a cascading effect causing an increase in phytoplankton biomass at 47% of study sites. Such changes in lake food webs could alter nutrient cycling and water clarity and trigger declines in fish production. Current Cl- thresholds across North America and Europe clearly do not adequately protect lake food webs. Water quality guidelines should be developed where they do not exist, and there is an urgent need to reassess existing guidelines to protect lake ecosystems from human-induced salinization.Peer reviewe

    Recent Asian origin of chytrid fungi causing global amphibian declines

    Get PDF
    Globalized infectious diseases are causing species declines worldwide, but their source often remains elusive. We used whole-genome sequencing to solve the spatiotemporal origins of the most devastating panzootic to date, caused by the fungus Batrachochytrium dendrobatidis, a proximate driver of global amphibian declines. We traced the source of B. dendrobatidis to the Korean peninsula, where one lineage, BdASIA-1, exhibits the genetic hallmarks of an ancestral population that seeded the panzootic. We date the emergence of this pathogen to the early 20th century, coinciding with the global expansion of commercial trade in amphibians, and we show that intercontinental transmission is ongoing. Our findings point to East Asia as a geographic hotspot for B. dendrobatidis biodiversity and the original source of these lineages that now parasitize amphibians worldwide

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Another Shipment of Six Short-Period Giant Planets from TESS

    Get PDF
    We present the discovery and characterization of six short-period, transiting giant planets from NASA's Transiting Exoplanet Survey Satellite (TESS) -- TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642), TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), & TOI-2497 (TIC 97568467). All six planets orbit bright host stars (8.9 <G< 11.8, 7.7 <K< 10.1). Using a combination of time-series photometric and spectroscopic follow-up observations from the TESS Follow-up Observing Program (TFOP) Working Group, we have determined that the planets are Jovian-sized (RP_{P} = 1.00-1.45 RJ_{J}), have masses ranging from 0.92 to 5.35 MJ_{J}, and orbit F, G, and K stars (4753 << Teff_{eff} << 7360 K). We detect a significant orbital eccentricity for the three longest-period systems in our sample: TOI-2025 b (P = 8.872 days, ee = 0.220±0.0530.220\pm0.053), TOI-2145 b (P = 10.261 days, ee = 0.1820.049+0.0390.182^{+0.039}_{-0.049}), and TOI-2497 b (P = 10.656 days, ee = 0.1960.053+0.0590.196^{+0.059}_{-0.053}). TOI-2145 b and TOI-2497 b both orbit subgiant host stars (3.8 << log\log g <<4.0), but these planets show no sign of inflation despite very high levels of irradiation. The lack of inflation may be explained by the high mass of the planets; 5.350.35+0.325.35^{+0.32}_{-0.35} MJ_{\rm J} (TOI-2145 b) and 5.21±0.525.21\pm0.52 MJ_{\rm J} (TOI-2497 b). These six new discoveries contribute to the larger community effort to use {\it TESS} to create a magnitude-complete, self-consistent sample of giant planets with well-determined parameters for future detailed studies.Comment: 20 Pages, 6 Figures, 8 Tables, Accepted by MNRA
    corecore