228 research outputs found
Sustaining Books and Papers in Hawaiʻi’s Environment
Presentation slidesHawaiʻi’s climate provides many challenges for preserving books and papers. This session will cover an introduction to environmental monitoring and its relationship with pest management and mold control. Bring questions about your top preservation issues to get the most out of this session
Ciclo vital del pulpo marmóreo, Amphioctopus aegina (Gray) (Cephalopoda: Octopodidae) criado en laboratorio
Reproducing small eggs and planktonic hatchlings is a reproductive strategy of many species of benthic octopods although it is considered a pleisiomorphic state. The young in the planktonic and settling phases have a high energy consumption and require live food of specific size range characteristics, causing difficulties in obtaining appropriate food organisms for rearing experiments through the entire life cycle. This study obtained information on details of life cycle characteristics of Amphioctopus aegina (Gray) by resolving these difficulties. The aspects of life cycle of A. aegina were similar to those of other benthic octopus with a similar reproductive strategy. Growth was allometric, consisting of 3 phases in terms of body weight, including a transitional phase for the early settling stage. Feeding and conversion efficiency peaked over a 2-month period prior to reproduction, representing the period of energy storage. Growth from hatching to spawning took approximately 74% of the entire life span and the reproductive phase itself took 34%. Such longevities are similar to those of other benthic cephalopods with planktonic hatchlings. Overall similarities in these cephalopod taxa attest to the fitness of a life-history strategy involving production of planktonic offspring from benthic adults. A. aegina is the second benthic octopus species with planktonic hatchlings for which the life cycle has been completed through rearing in the laboratory.El desove de pequeños huevos que darán origen a plancton constituye la estrategia de reproducción de numerosos octópodos bénticos, aunque se asocia a un estado plesiomórfico. Las nuevas criaturas en fase planctónica y de asentamiento requieren un gran consumo energético y nutrientes vivos con características y dimensiones específicas, lo que dificulta la obtención de organismos que les sirvan de alimento a lo largo de todo el ciclo vital. A partir de este estudio se han obtenido datos sobre las características del ciclo vital del Amphioctopus aegina (Gray) mediante la resolución de estas dificultades. Muchos aspectos del ciclo vital del A. aegina resultaron muy similares a los de otros pulpos bénticos con una estrategia de reproducción parecida. Se produjo un crecimiento alométrico en tres fases, según el peso corporal, que incluía una fase de transición en el periodo de asentamiento inicial. La eficacia en la alimentación y la conversión alcanzó su punto máximo en los 2 meses previos a la reproducción, que representan un periodo de almacenamiento energético. El crecimiento desde la eclosión hasta el desove fue aproximadamente el 74% del ciclo vital completo, y la fase reproductiva en sí supuso un 34%. Tal longevidad es compartida por otros cefalópodos bénticos con desoves planctónicos. Las similitudes generales entre estas categorías taxonómicas de cefalópodos confirman el éxito de esta estrategia de ciclos vitales en la producción de crías planctónicas por parte de adultos bénticos. A. aegina es la segunda especie de pulpo béntico con desove planctónico cuyo ciclo vital ha logrado completarse mediante la cría en laboratorio
Detection of Colorectal Cancer by Serum and Tissue Protein Profiling: A Prospective Study in a Population at Risk
Colorectal cancer (CRC) is the second most common cause of cancer-related death in Europe and its prognosis is largely dependent on stage at diagnosis. Currently, there are no suitable tumour markers for early detection of CRC. In a retrospective study we previously found discriminative CRC serum protein profiles with surface enhanced laser desorption ionisation—time of flight mass spectrometry (SELDI-TOF MS). We now aimed at prospective validation of these profiles. Additionally, we assessed their applicability for follow-up after surgery and investigated tissue protein profiles of patients with CRC and adenomatous polyps (AP). Serum and tissue samples were collected from patients without known malignancy with an indication for colonoscopy and patients with AP and CRC during colonoscopy. Serum samples of controls (CON; n = 359), patients with AP (n = 177) and CRC (n = 73), as well as tissue samples from AP (n = 52) and CRC (n = 47) were analysed as described previously. Peak intensities were compared by non-parametric testing. Discriminative power of differentially expressed proteins was assessed with support vector machines (SVM). We confirmed the decreased serum levels of apolipoprotein C-1 in CRC in the current population. No differences were observed between CON and AP. Apolipoprotein C-I levels did not change significantly within 1 month post-surgery, although a gradual return to normal levels was observed. Several proteins differed between AP and CRC tissue, among which a peak with similar mass as apolipoprotein C-1. This peak was increased in CRC compared to AP. Although we prospectively validated the serum decrease of apolipoprotein C-1 in CRC, serum protein profiles did not yield SVM classifiers with suitable sensitivity and specificity for classification of our patient groups
Best Practices for Library Exhibitions
Best Practices for Library Exhibitions provides a comprehensive framework and recommended practices for developing and managing exhibitions in art libraries and similar types of information environments. It offers real-world insights complementing library and information science program curricula enriching students’ learning about exhibition development, which is a growing expectation for librarians.
The document is organized by three main areas: Creation, Operation and Logistics, and Management, reflecting the actual cycle of exhibitions. Specific best practices include Curation and Policies, Digital Exhibits, Diversity/Equity/Inclusion/Accessibility, Loaning, Conservation Care, Facilities, Engagement, Marketing and Outreach, Documentation, Evaluation, and Financial Management. The initiative for this project was endeavored by the Exhibitions Special Interest Group with contributions from library professionals representing a variety of institutions and specialties
Age validation in Octopus maya (Voss and Solís, 1966) by counting increments in the beak sections of known age individuals
The present study was carried out to validate the daily deposition and age estimation by using beak rostrum sagittal sections increments of cultivated Octopus maya (Voss and Solís, 1966). This study validates
for first time the periodicity of beak increments by using animals of known age. We analyzed the rostrum
sagittal sections (RSS) of upper and lower beaks in 40 juveniles of O. maya divided into four age groups
(63, 87, 105 and 122 days) with 10 individuals per group. The animals were fed with a soft diet allowing
obtaining age estimations not affected by the beak erosion. At the same time 50 animals were sampled
every 20 days until 120 days old to obtain an age-body wet weight (BW) curve which could be compared
with the age-BW curve obtained using age estimations from beaks. Co-variance analysis showed no statistical differences between both curves. The number of increments present in the beaks corresponded
with the number of days from hatchling. Therefore, it was possible to validate that a growth increment
corresponds to a day of life in O. maya, confirming that, up to 122 days old, the beaks counts can be used
to determine the age of O. maya.Post-print
The Fourth SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-4)
Ten international laboratories specializing in the determination of marine pigment concentrations using high performance liquid chromatography (HPLC) were intercompared using in situ samples and a mixed pigment sample. Although prior Sea-viewing Wide Field-of-view Sensor (SeaWiFS) High Performance Liquid Chromatography (HPLC) Round-Robin Experiment (SeaHARRE) activities conducted in open-ocean waters covered a wide dynamic range in productivity, and some of the samples were collected in the coastal zone, none of the activities involved exclusively coastal samples. Consequently, SeaHARRE-4 was organized and executed as a strictly coastal activity and the field samples were collected from primarily eutrophic waters within the coastal zone of Denmark. The more restrictive perspective limited the dynamic range in chlorophyll concentration to approximately one and a half orders of magnitude (previous activities covered more than two orders of magnitude). The method intercomparisons were used for the following objectives: a) estimate the uncertainties in quantitating individual pigments and higher-order variables formed from sums and ratios; b) confirm if the chlorophyll a accuracy requirements for ocean color validation activities (approximately 25%, although 15% would allow for algorithm refinement) can be met in coastal waters; c) establish the reduction in uncertainties as a result of applying QA procedures; d) show the importance of establishing a properly defined referencing system in the computation of uncertainties; e) quantify the analytical benefits of performance metrics, and f) demonstrate the utility of a laboratory mix in understanding method performance. In addition, the remote sensing requirements for the in situ determination of total chlorophyll a were investigated to determine whether or not the average uncertainty for this measurement is being satisfied
Elucidation of the preferred routes of C8-vinyl reduction in chlorophyll and bacteriochlorophyll biosynthesis
Most of the chlorophylls and bacteriochlorophylls utilized for light harvesting by phototrophic organisms carry an ethyl group at the C8 position of the molecule, the product of a C8-vinyl reductase acting on a chlorophyll/bacteriochlorophyll biosynthetic precursor. Two unrelated classes of C8-vinyl reductase are known to exist, BciA and BciB, found in the purple phototroph Rhodobacter sphaeroides and the cyanobacterium Synechocystis sp. PCC6803 respectively. We constructed strains of each bacterium with the native C8-vinyl reductase swapped for the other class of the enzyme, and combined these replacements with a series of deletions of the native bch and chl genes. In vivo data indicate that the preferred substrates for both classes of the enzyme is C8-vinyl chlorophyllide, with C8-vinyl protochlorophyllide reduced only under conditions in which this pigment accumulates as a result of perturbed formation of chlorophyllide
Sampling, separation, and quantification of N-acyl homoserine lactones from marine intertidal sediments
N-acyl homoserine lactones (AHLs) are molecules produced by many Gram-negative bacteria as mediators of cell-cell signaling in a mechanism known as quorum sensing (QS). QS is widespread in marine bacteria regulating diverse processes, such as virulence or excretion of polymers that mediate biofilm formation. Associated eukaryotes, such as microalgae, respond to these cues as well, leading to an intricate signaling network. To date, only very few studies attempted to measure AHL concentrations in phototrophic microbial communities, which are hot spots for bacteria-bacteria as well as microalgae-bacteria interactions. AHL quantification in environmental samples is challenging and requires a robust and reproducible sampling strategy. However, knowing about AHL concentrations opens up multiple perspectives from answering fundamental ecological questions to deriving guidelines for manipulation and control of biofilms. Here, we present a method for sampling and AHL identification and quantification from marine intertidal sediments. The use of contact cores for sediment sampling ensures reproducible sample surface area and volume at each location. Flash-freezing of the samples with liquid nitrogen prevents enzymatic AHL degradation between sampling and extraction. After solvent extraction, samples were analyzed with an ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) method that allows to baseline-separate 16 different AHLs in less than 10 min. The sensitivity of the method is sufficient for detection and quantification of AHLs in environmental samples of less than 16 cm(3)
Size resolved characterization of the polysaccharidic and proteinaceous components of sea spray aerosol
Dissolved organic polymers released by phytoplankton and bacteria abiologically self-assemble in surface ocean waters into nano-to micro-sized gels containing polysaccharides, proteins, lipids and other components. These gels concentrate in the sea surface microlayer (SML), where they can potentially contribute to sea spray aerosol (SSA). Sea spray is a major source of atmospheric aerosol mass over much of the earth’s surface, and knowledge of its properties (including the amount and nature of the organic content), size distributions and fluxes are fundamental for determining its role in atmospheric chemistry and climate. Using a cascade impactor, we collected size-fractionated aerosol particles from ambient air and from freshly generated Sea Sweep SSA in the western North Atlantic Ocean together with biological and chemical characterization of subsurface and SML waters. Spectrophotometric methods were applied to quantify the polysaccharide-containing transparent exopolymer (TEP) and protein-containing Coomassie stainable material (CSM) in these particles and waters. This study demonstrates that both TEP and CSM in surface ocean waters are aerosolized with sea spray with the greatest total TEP associated with particles <180 nm in diameter and >5 000 nm. The higher concentrations of TEP and CSM in particles >5 000 nm most likely reflects collection of microorganism cells and/or fragments. The greater concentration of CSM in larger size particles may also reflect greater stability of proteinaceous gels compared to polysaccharide-rich gels in surface waters and the SML. Both TEP and CSM were measured in the ambient marine air sample with concentrations of 2.1 ± 0.16 μg Xanthan Gum equivalents (XG eq.) m−3 and 14 ± 1.0 μg bovine serum albumin equivalents (BSA eq.) m−3. TEP in Sea Sweep SSA averaged 4.7 ± 3.1 μg XG eq. m−3 and CSM 8.6 ± 7.3 μg BSA eq. m−3. This work shows the transport of marine biogenic material across the air-sea interface through primary particle emission and the first demonstration of particle size discriminated TEP and CSM characterization of SSA and ambient aerosol under field conditions
- …