123 research outputs found

    Zara: Facing Fast Fashion Challenges in China. An International Marketing Case Study

    Get PDF
    Zara, one of the largest international fashion companies, was founded in Spain in 1974. It has a brand value of 18.4billionandglobalrevenuesof18.4 billion and global revenues of 28.22 billion in 2018. Zara entered China in 2006 to compete in its 5.58billionfastfashionmarket(Ge,2018).ChinaisanattractiveemergingmarketwithaGDPof5.58 billion fast fashion market (Ge, 2018). China is an attractive emerging market with a GDP of 13.6 trillion, growing at 5.9% (World Bank, 2019). Zara’s fast fashion typically appeals to young college students and the middle class with income ranging from 7,250to7,250 to 62,500, representing about 39% of the population (Cyrill, 2019). In China, Zara targeted young women entering the work force who were looking for affordable yet high-quality, timeless Asian style clothing. However, the fast fashion industry has been declining in China due to several reasons: high shipping costs, high levels of competition influenced by customization, fast paced rotation of designs, e-commerce, and collectivist cultural values of the consumers. Moreover, local Chinese stores are moving upmarket by offering more affordable clothing with a higher perceived value and this has also affected Zara negatively (Jun, 2019). This case study provides an overview of China and its fast fashion industry, consumer preferences, competitors and the cultural as well as socio-economic context in which Zara needs to compete. An analysis of Zara’s current marketing strategy in China provides insights into how it should change its marketing mix in order to succeed. Keywords: Zara, China, fast fashion, international marketing, case study, marketing strategy, emerging market. Note: References available on reques

    Diaminothiazoles Modify Tau Phosphorylation and Improve the Tauopathy in Mouse Models

    Get PDF
    Although Tau accumulation is a feature of several neurodegenerative conditions, treatment options for these conditions are nonexistent. Targeting Tau kinases represents a potential therapeutic approach. Small molecules in the diaminothiazole class are potent Tau kinase inhibitors that target CDK5 and GSK3?. Lead compounds from the series have IC50 values toward CDK5/p25 and GSK3? in the low nanomolar range and no observed toxicity in the therapeutic dose range. Neuronal protective effects and decreased PHF-1 immunoreactivity were observed in two animal models, 3×Tg-AD and CK-p25. Treatment nearly eliminated Sarkosyl-insoluble Tau with the most prominent effect on the phosphorylation at Ser-404. Treatment also induced the recovery of memory in a fear conditioning assay. Given the contribution of both CDK5/p25 and GSK3? to Tau phosphorylation, effective treatment of tauopathies may require dual kinase targeting

    Angular Momentum and Vortex Formation in Bose-Einstein-Condensed Cold Dark Matter Haloes

    Full text link
    (Abridged) Extensions of the standard model of particle physics predict very light bosons, ranging from about 10^{-5} eV for the QCD axion to 10^{-33} eV for ultra-light particles, which could be the cold dark matter (CDM) in the Universe. If so, their phase-space density must be high enough to form a Bose-Einstein condensate (BEC). The fluid-like nature of BEC-CDM dynamics differs from that of standard collisionless CDM (sCDM), so observations of galactic haloes may distinguish them. sCDM has problems with galaxy observations on small scales, which BEC-CDM may overcome for a large range of particle mass m and self-interaction strength g. For quantum-coherence on galactic scales of radius R and mass M, either the de-Broglie wavelength lambda_deB ~ m_H \cong 10^{-25}(R/100 kpc)^{-1/2}(M/10^{12} M_solar)^{-1/2} eV, or else lambda_deB << R but self-interaction balances gravity, requiring m >> m_H and g >> g_H \cong 2 x 10^{-64} (R/100 kpc)(M/10^{12} M_solar)^{-1} eV cm^3. Here we study the largely-neglected effects of angular momentum. Spin parameters lambda \cong 0.05 are expected from tidal-torquing by large-scale structure, just as for sCDM. Since lab BECs develop quantum vortices if rotated rapidly enough, we ask if this angular momentum is sufficient to form vortices in BEC haloes, affecting their structure with potentially observable consequences. The minimum angular momentum for this, L_{QM} = M/m\hbar M/m, requires m >= 9.5 m_H for lambda = 0.05, close to the particle mass required to influence structure on galactic scales. We study the equilibrium of self-gravitating, rotating BEC haloes which satisfy the Gross-Pitaevskii-Poisson equations, to calculate if and when vortices are energetically favoured. Vortices form as long as self-interaction is strong enough, which includes a large part of the range of m and g of interest for BEC-CDM haloes.Comment: Several typos and numerical typos (incl. in Fig.6, Table 2 and Table 3) have been corrected and references have been updated after proof-reading stage; MNRAS in press; 29 pages; 11 figure

    Human astrocytes and microglia show augmented ingestion of synapses in Alzheimer's disease via MFG-E8

    Get PDF
    Synapse loss correlates with cognitive decline in Alzheimer's disease (AD). Data from mouse models suggests microglia are important for synapse degeneration, but direct human evidence for any glial involvement in synapse removal in human AD remains to be established. Here we observe astrocytes and microglia from human brains contain greater amounts of synaptic protein in AD compared with non-disease controls, and that proximity to amyloid-β plaques and the APOE4 risk gene exacerbate this effect. In culture, mouse and human astrocytes and primary mouse and human microglia phagocytose AD patient-derived synapses more than synapses from controls. Inhibiting interactions of MFG-E8 rescues the elevated engulfment of AD synapses by astrocytes and microglia without affecting control synapse uptake. Thus, AD promotes increased synapse ingestion by human glial cells at least in part via an MFG-E8 opsonophagocytic mechanism with potential for targeted therapeutic manipulation.</p

    Covariant Lagrange multiplier constrained higher derivative gravity with scalar projectors

    Full text link
    We formulate higher derivative gravity with Lagrange multiplier constraint and scalar projectors. Its gauge-fixed formulation as well as vector fields formulation is developed and corresponding spontaneous Lorentz symmetry breaking is investigated. We show that the only propagating mode is higher derivative graviton while scalar and vector modes do not propagate. Despite to higher derivatives structure of the action, its first FRW equation is the first order differential equation which admits the inflationary universe solution.Comment: Physics Letters B published version. LaTeX 12 page

    The extracellular matrix and insulin resistance

    Get PDF
    The extracellular matrix (ECM) is a highly dynamic compartment that undergoes remodeling as a result of injury and repair. Over the past decade, mounting evidence in humans and rodents suggest that ECM remodeling is associated with diet-induced insulin resistance in several metabolic tissues. Additionally, integrin receptors for the ECM have also been implicated in the regulation of insulin action. This review will address what is currently known about the ECM, integrins and insulin action in the muscle, liver and adipose tissue. Understanding how ECM remodeling and integrin signaling regulates insulin action may aid in the development of new therapeutic targets for the treatment of insulin resistance and type 2 diabetes

    City of Hitchcock Comprehensive Plan 2020-2040

    Get PDF
    Hitchcock is a small town located in Galveston County (Figure 1.1), nestled up on the Texas Gulf Coast. It lies about 40 miles south-east of Houston. The boundaries of the city encloses an area of land of 60.46 sq. miles, an area of water of 31.64 sq. miles at an elevation just 16 feet above sea level. Hitchcock has more undeveloped land (~90% of total area) than the county combined. Its strategic location gives it a driving force of opportunities in the Houston-Galveston Region.The guiding principles for this planning process were Hitchcock’s vision statement and its corresponding goals, which were crafted by the task force. The goals focus on factors of growth and development including public participation, development considerations, transportation, community facilities, economic development, parks, and housing and social vulnerabilityTexas Target Communitie

    Rockport Comprehensive Plan

    Get PDF
    This document was developed and prepared by Texas Target Communities (TxTC) at Texas A&M University in partnership with the City of Rockport, Texas Sea Grant, Texas A&M University - Corpus Christi, Texas A&M University - School of Law and Texas Tech University.Founded in 1871, the City of Rockport aims to continue growing economically and sustainably. Rockport is a resilient community dedicated to sustainable growth and attracting businesses to the area. Rockport is a charming town that offers a close-knit community feel and is a popular tourist destination for marine recreation, fairs, and exhibitions throughout the year. The Comprehensive Plan 2020-2040 is designed to guide the city of Rockport for its future growth. The guiding principles for this planning process were Rockport's vision statement and its corresponding goals, which were crafted by the task force. The goals focus on factors of growth and development including public participation, development considerations, transportation, community facilities, economic development, parks, and housing and social vulnerability
    corecore