132 research outputs found

    Epitypification of the Central African Cantharellus densifolius and C. luteopunctatus allows for the recognition of two additional species

    Get PDF
    Cantharellus densifolius and C. luteopunctatus are epitypified on the basis of recently collected specimens from the Central African rain forest that correspond in every way to their respective original descriptions. Sequences obtained from these new collections demonstrate that both epitypes represent distinct species that belong in different subclades of Cantharellus subg. Rubrinus. Previously, the name C. densifolius has been consistently misapplied to more or less similar species from the African woodland area, including C. densilamellatus sp. nov. which is described here, In addition, C. tomentosoides sp. nov., a rain forest species that is easily confused with C. densifolius, is described

    Animal-fungal interactions 3: first report of mycophagy by the African Brush-tailed Porcupine Atherurus africanus Gray, 1842 (Mammalia: Rodentia: Hystricidae)

    Get PDF
    Fungi are an important food source for a diversity of animals throughout the world, but these associations have been poorly studied in Africa. In this short note based on an observation from the Congo Basin of Cameroon, we provide the first report of mycophagy by the African brush-tailed porcupine and the first account of the hypogeous fungal genus Elaphomyces being eaten by an animal in Africa

    Elucidating the nutritional dynamics of fungi using stable isotopes

    Get PDF
    Abstract Mycorrhizal and saprotrophic (SAP) fungi are essential to terrestrial element cycling due to their uptake of mineral nutrients and decomposition of detritus. Linking these ecological roles to specific fungi is necessary to improve our understanding of global nutrient cycling, fungal ecophysiology, and forest ecology

    New sequestrate fungi from Guyana: Jimtrappea guyanensis gen. sp. nov., Castellanea pakaraimophila gen. sp. nov., and Costatisporus cyanescens gen. sp. nov.(Boletaceae, Boletales)

    Get PDF
    Jimtrappea guyanensis gen. sp. nov., Castellanea pakaraimophila gen. sp. nov., and Costatisporus cyanescens gen. sp. nov. are described as new to science. These sequestrate, hypogeous fungi were collected in Guyana under closed canopy tropical forests in association with ectomycorrhizal (ECM) host tree genera Dicymbe (Fabaceae subfam. Caesalpinioideae), Aldina (Fabaceae subfam. Papilionoideae), and Pakaraimaea (Dipterocarpaceae). Molecular data place these fungi in Boletaceae (Boletales, Agaricomycetes, Basidiomycota) and inform their relationships to other known epigeous and sequestrate taxa within that family. Macro- and micromorphological characters, habitat, and multi-locus DNA sequence data are provided for each new taxon. Unique morphological features and a molecular phylogenetic analysis of 185 taxa across the order Boletales justify the recognition of the three new genera

    Kombocles bakaiana gen. sp. nov. (Boletaceae), a new sequestrate fungus from Cameroon

    Get PDF
    Kombocles bakaiana gen. sp. nov. is described as new to science. This sequestrate, partially hypogeous fungus was collected around and within the stilt root system of an ectomycorrhizal (ECM) tree of the genus Uapaca (Phyllanthaceae) in a Guineo-Congolian mixed tropical rainforest in Cameroon. Molecular data place this fungus in Boletaceae (Boletales, Agaricomycetes, Basidiomycota) with no clear relationship to previously described taxa within the family. Macro- and micromorphological characters, habitat, and DNA sequence data are provided. Unique morphological features and a molecular phylogenetic analysis of 304 sequences across the Boletales justify the recognition of the new taxa. Kombocles bakaiana is the fourth sequestrate Boletaceae described from the greater African tropics, and the first to be described from Cameroon

    New species of Elaphomyces (Elaphomycetaceae, Eurotiales, Ascomycota) from tropical rainforests of Cameroon and Guyana

    Get PDF
    The sequestrate false truffles Elaphomyces favosus, E. iuppitercellus, and E. labyrinthinus spp. nov. are described as new to science from the Dja Biosphere Reserve, Cameroon. Elaphomyces adamizans sp. nov. is described as new from the Pakaraima Mountains of Guyana. The Cameroonian species are the first Elaphomyces taxa to be formally described from Africa, occurring in lowland Guineo-Congolian tropical rainforests dominated by the ectomycorrhizal (ECM) canopy tree Gilbertiodendron dewevrei (Fabaceae subfam. Caesalpinioideae). The Guyanese species is the third to be discovered in lowland tropical South America, occurring in forests dominated by the ECM trees Pakaraimaea dipterocarpacea (Dipterocarpaceae) and Dicymbe jenmanii (Fabaceae subfam. Caesalpinioideae). Macromorphological, micromorphological, habitat, and DNA sequence data are provided for each new species. Molecular and morphological data place these fungi in Elaphomycetaceae (Eurotiales, Ascomycota). Unique morphological features are congruent with molecular delimitation of each of the new species based on a phylogenetic analysis of the rDNA ITS and 28S loci across the Elaphomycetaceae. The phylogenetic analysis also suggests that a common ancestor is shared between some Elaphomyces species from Africa and South America, and that species of the stalked, volvate genus Pseudotulostoma may be nested in Elaphomyces

    Global patterns in endemicity and vulnerability of soil fungi

    Get PDF
    Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms

    Global patterns in endemicity and vulnerability of soil fungi

    Get PDF
    Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms

    Estimating the global conservation status of more than 15,000 Amazonian tree species

    Get PDF
    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict thatmost of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century
    corecore