55 research outputs found

    Measuring the performance of spatial interaction models in practice

    Get PDF
    Spatial decision support systems are widely used throughout the retail industry. As a result of this, a competitive industry has developed in order to provide such systems. One such company is GMAP Ltd who provide information systems for companies such as WH Smith, Halifax Pic and Toyota. Due to the competitiveness of the market analysis industry it is necessary for companies such as GMAP to endeavour to continually improve their products in order to remain at the leading edge of the decision support industry. Research is required in order to discover methods of improving the performance of the spatial interaction models that GMAP have developed loi theii clients. This thesis looks at two case studies of modelling work undertaken by GMAP for clients, the WH Smith model and the model for Halifax Pic new mortgage sales and tries to improve the performance of these models through a variety of methods. Each of the three components of spatial interaction models, demand, supply and interaction, are analysed in turn and attempts are made to improve the representation of these components in the case study models. I he demand component is investigated using the WH Smith model and different methods of estimating demand using alternative data sources are investigated in order to discover if improvements can be made to the existing demand estimation procedure used by GMAP. I he representation of the supply side is investigated by attempting to identify centre and store characteristics that influence the attractiveness of destinations and subsequently include such variables in the attractiveness calculation. Several aspects of the interaction component are investigated in order to determine if they can be improved. I he measurement of impedance and the form of the impedance function together with alternative measurements of accessibility are investigated to see whether interaction patterns can be predicted more accurately. The conclusions that arise from the investigations undertaken are presented as a series of recommendations for GMAP Ltd that can be implemented to improve the performance of their models. The implications for the specification of spatial interaction models in other contexts are also identified

    Diel Temperature and pH Variability Scale With Depth Across Diverse Coral Reef Habitats

    Get PDF
    Coral reefs are facing intensifying stressors, largely due to global increases in seawater temperature and decreases in pH. However, there is extensive environmental variability within coral reef ecosystems, which can impact how organisms respond to global trends. We deployed spatial arrays of autonomous sensors across distinct shallow coral reef habitats to determine patterns of spatiotemporal variability in seawater physicochemical parameters. Temperature and pH were positively correlated over the course of a day due to solar heating and light‐driven metabolism. The mean temporal and spatial ranges of temperature and pH were positively correlated across all sites, with different regimes of variability observed in different reef types. Ultimately, depth was a reliable predictor of the average diel ranges in both seawater temperature and pH. These results demonstrate that there is widespread environmental variability on diel timescales within coral reefs related to water column depth, which needs to be included in assessments of how global change will locally affect reef ecosystems

    Epidemiology of Clostridium difficile in infants in Oxfordshire, UK: Risk factors for colonization and carriage, and genetic overlap with regional C. difficile infection strains

    Get PDF
    Background: Approximately 30-40% of children <1 year of age are Clostridium difficile colonized, and may represent a reservoir for adult C. difficile infections (CDI). Risk factors for colonization with toxigenic versus non-toxigenic C. difficile strains and longitudinal acquisition dynamics in infants remain incompletely characterized. Methods: Predominantly healthy infants (≤2 years) were recruited in Oxfordshire, UK, and provided ≥1 fecal samples. Independent risk factors for toxigenic/non-toxigenic C. difficile colonization and acquisition were identified using multivariable regression. Infant C. difficile isolates were whole-genome sequenced to assay genetic diversity and prevalence of toxin-associated genes, and compared with sequenced strains from Oxfordshire CDI cases. Results: 338/365 enrolled infants provided 1332 fecal samples, representing 158 C. difficile colonization or carriage episodes (107[68%] toxigenic). Initial colonization was associated with age, and reduced with breastfeeding but increased with pet dogs. Acquisition was associated with older age, Caesarean delivery, and diarrhea. Breastfeeding and pre-existing C. difficile colonization reduced acquisition risk. Overall 13% of CDI C. difficile strains were genetically related to infant strains. 29(18%) infant C. difficile sequences were consistent with recent direct/indirect transmission to/from Oxfordshire CDI cases (≤2 single nucleotide variants [SNVs]); 79(50%) shared a common origin with an Oxfordshire CDI case within the last ~5 years (0-10 SNVs). The hypervirulent, epidemic ST1/ribotype 027 remained notably absent in infants in this large study, as did other lineages such as STs 10/44 (ribotype 015); the most common strain in infants was ST2 (ribotype 020/014)(22%). Conclusions: In predominantly healthy infants without significant healthcare exposure C. difficile colonization and acquisition reflect environmental exposures, with pet dogs identified as a novel risk factor. Genetic overlap between some infant strains and those isolated from CDI cases suggest common community reservoirs of these C. difficile lineages, contrasting with those lineages found only in CDI cases, and therefore more consistent with healthcare-associated spread

    International Consensus Recommendations for the Treatment of Pediatric NMDAR Antibody Encephalitis

    Get PDF
    To create an international consensus treatment recommendation for pediatric NMDA receptor antibody encephalitis (NMDARE).After selection of a panel of 27 experts with representation from all continents, a 2-step Delphi method was adopted to develop consensus on relevant treatment regimens and statements, along with key definitions in pediatric NMDARE (disease severity, failure to improve, and relapse). Finally, an online face-to-face meeting was held to reach consensus (defined as ?75% agreement).Corticosteroids are recommended in all children with NMDARE (pulsed IV preferred), with additional IV immunoglobulin or plasma exchange in severe patients. Prolonged first-line immunotherapy can be offered for up to 3-12 months (oral corticosteroids or monthly IV corticosteroids/immunoglobulin), dependent on disease severity. Second-line treatments are recommended for cases refractory to first-line therapies (rituximab preferred over cyclophosphamide) and should be considered about 2 weeks after first-line initiation. Further immunotherapies for refractory disease 1-3 months after second-line initiation include another second-line treatment (such as cyclophosphamide) and escalation to tocilizumab. Maintenance immune suppression beyond 6 months (such as rituximab redosing or mycophenolate mofetil) is generally not required, except for patients with a more severe course or prolonged impairments and hospitalization. For patients with relapsing disease, second-line and prolonged maintenance therapy should be considered. The treatment of NMDARE following herpes simplex encephalitis should be similar to idiopathic NMDARE. Broad guidance is provided for the total treatment duration (first line, second line, and maintenance), which is dictated by the severity and clinical course (i.e., median 3, 9 and 18 months in the best, average, and worst responders, respectively). Recommendations on the timing of oncologic searches are provided.These international consensus recommendations for the management of pediatric NMDARE aim to standardize the treatment and provide practical guidance for clinicians, rather than absolute rules. A similar recommendation could be applicable to adult patients.Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology

    Taking the Metabolic Pulse of the World\u27s Coral Reefs

    Get PDF
    Worldwide, coral reef ecosystems are experiencing increasing pressure from a variety of anthropogenic perturbations including ocean warming and acidification, increased sedimentation, eutrophication, and overfishing, which could shift reefs to a condition of net calcium carbonate (CaCO3) dissolution and erosion. Herein, we determine the net calcification potential and the relative balance of net organic carbon metabolism (net community production; NCP) and net inorganic carbon metabolism (net community calcification; NCC) within 23 coral reef locations across the globe. In light of these results, we consider the suitability of using these two metrics developed from total alkalinity (TA) and dissolved inorganic carbon (DIC) measurements collected on different spatiotemporal scales to monitor coral reef biogeochemistry under anthropogenic change. All reefs in this study were net calcifying for the majority of observations as inferred from alkalinity depletion relative to offshore, although occasional observations of net dissolution occurred at most locations. However, reefs with lower net calcification potential (i.e., lower TA depletion) could shift towards net dissolution sooner than reefs with a higher potential. The percent influence of organic carbon fluxes on total changes in dissolved inorganic carbon (DIC) (i.e., NCP compared to the sum of NCP and NCC) ranged from 32% to 88% and reflected inherent biogeochemical differences between reefs. Reefs with the largest relative percentage of NCP experienced the largest variability in seawater pH for a given change in DIC, which is directly related to the reefs ability to elevate or suppress local pH relative to the open ocean. This work highlights the value of measuring coral reef carbonate chemistry when evaluating their susceptibility to ongoing global environmental change and offers a baseline from which to guide future conservation efforts aimed at preserving these valuable ecosystems

    Targeting the MAPK7/MMP9 axis for metastasis in primary bone cancer

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2020-03-17, rev-recd 2020-05-24, accepted 2020-06-23, registration 2020-06-24, pub-electronic 2020-07-13, online 2020-07-13, pub-print 2020-08-13Publication status: PublishedFunder: Friends of RosieFunder: THRT, Big C, Paget's AssociationAbstract: Metastasis is the leading cause of cancer-related death. This multistage process involves contribution from both tumour cells and the tumour stroma to release metastatic cells into the circulation. Circulating tumour cells (CTCs) survive circulatory cytotoxicity, extravasate and colonise secondary sites effecting metastatic outcome. Reprogramming the transcriptomic landscape is a metastatic hallmark, but detecting underlying master regulators that drive pathological gene expression is a key challenge, especially in childhood cancer. Here we used whole tumour plus single-cell RNA-sequencing in primary bone cancer and CTCs to perform weighted gene co-expression network analysis to systematically detect coordinated changes in metastatic transcript expression. This approach with comparisons applied to data collected from cell line models, clinical samples and xenograft mouse models revealed mitogen-activated protein kinase 7/matrix metallopeptidase 9 (MAPK7/MMP9) signalling as a driver for primary bone cancer metastasis. RNA interference knockdown of MAPK7 reduces proliferation, colony formation, migration, tumour growth, macrophage residency/polarisation and lung metastasis. Parallel to these observations were reduction of activated interleukins IL1B, IL6, IL8 plus mesenchymal markers VIM and VEGF in response to MAPK7 loss. Our results implicate a newly discovered, multidimensional MAPK7/MMP9 signalling hub in primary bone cancer metastasis that is clinically actionable

    The role of hydrogen and fuel cells in the global energy system

    Get PDF
    Hydrogen technologies have experienced cycles of excessive expectations followed by disillusion. Nonetheless, a growing body of evidence suggests these technologies form an attractive option for the deep decarb onisation of global energy systems, and that recent improvements in their cost and performance point towards economic viability as well. This paper is a comprehensive review of the potential role that hydrogen could play in the provision of electricity, h eat, industry, transport and energy storage in a low - carbon energy system, and an assessment of the status of hydrogen in being able to fulfil that potential. The picture that emerges is one of qualified promise: hydrogen is well established in certain nic hes such as forklift trucks, while mainstream applications are now forthcoming. Hydrogen vehicles are available commercially in several countries, and 225,000 fuel cell home heating systems have been sold. This represents a step change from the situation of only five years ago. This review shows that challenges around cost and performance remain, and considerable improvements are still required for hydrogen to become truly competitive. But such competitiveness in the medium - term future no longer seems an unrealistic prospect, which fully justifies the growing interest and policy support for these technologies around the world

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes

    Targeting the MAPK7/MMP9 axis for metastasis in primary bone cancer

    Get PDF
    Metastasis is the leading cause of cancer related death. This multistage process involves contribution from both tumour cells and the tumour stroma to release metastatic cells into the circulation. Circulating tumour cells (CTCs) survive circulatory cytotoxicity, extravasate and colonise secondary sites effecting metastatic outcome. Reprogramming the transcriptomic landscape is a metastatic hallmark but detecting underlying master regulators that drive pathological gene expression is a key challenge, especially in childhood cancer. Here we used whole tumour plus single cell RNA sequencing in primary bone cancer and CTCs to perform weighted gene co-expression network analysis to systematically detect coordinated changes in metastatic transcript expression. This approach with comparisons applied to data collected from cell line models, clinical samples and xenograft mouse models revealed MAPK7/MMP9 signalling as a driver for primary bone cancer metastasis. RNAi knockdown of MAPK7 reduces proliferation, colony formation, migration, tumour growth, macrophage residency/polarisation and lung metastasis. Parallel to these observations were reduction of activated interleukins IL1B, IL6, IL8 plus mesenchymal markers VIM and VEGF in response to MAPK7 loss. Our results implicate a newly discovered, multidimensional MAPK7/MMP9 signalling hub in primary bone cancer metastasis that is clinically actionable
    corecore