11 research outputs found

    Sugar Transport, Metabolism and Signaling in Fruit Development of Litchi chinensis Sonn: A Review

    No full text
    Litchi chinensis Sonn. is an important evergreen fruit crop cultivated in the tropical and subtropical regions. The edible portion of litchi fruit is the aril, which contains a high concentration of sucrose, glucose, and fructose. In this study, we review various aspects of sugar transport, metabolism, and signaling during fruit development in litchi. We begin by detailing the sugar transport and accumulation during aril development, and the biosynthesis of quebrachitol as a transportable photosynthate is discussed. We then document sugar metabolism in litchi fruit. We focus on the links between sugar signaling and seed development as well as fruit abscission. Finally, we outline future directions for research on sugar metabolism and signaling to improve fruit yield and quality

    Magnesium alleviates aluminum-induced growth inhibition by enhancing antioxidant enzyme activity and carbon–nitrogen metabolism in apple seedlings

    No full text
    Previous studies have determined that magnesium (Mg) in appropriate concentrations prevents plants from suffering from abiotic stress. To better understand the mechanism of Mg alleviation of aluminum (Al) stress in apple, we investigated the effect of Mg on plant growth, photosynthetic fluorescence, antioxidant system, and carbon (C) and nitrogen (N) metabolism of apple seedlings under Al toxicity (1.5 mmol/L) via a hydroponic experiment. Al stress induced the production of reactive oxygen in the leaves and roots and reduced the total dry weight (DW) by 52.37 % after 20 days of treatment relative to plants grown without Al, due to hindered photosynthesis and alterations in C and N metabolism. By contrast, total DW decreased by only 11.07 % in the Mg-treated plants under Al stress. Supplementation with 3.0 mmol/L Mg in the Al treatment decreased Al accumulation in the apple plants and reduced Al-induced oxidative damage by enhancing the activity of antioxidant enzymes (superoxide dismutase, catalase, and peroxidase) and reducing the production of H2O2 and malondialdehyde (MDA). Under Al stress, the Mg-treated plants showed a 46.17 % higher photosynthetic rate than the non-treated plants. Supplementation with Mg significantly increased the sucrose content by increasing sucrose synthase (SS) and sucrose-phosphate synthase (SPS) activities. Moreover, Mg facilitated the transport of 13C-carbohydrates from the leaves to roots. Regarding N metabolism, the nitrate reductase (NR), glutamine synthase (GS), and glutamate synthase (GOGAT) activities in the roots and leaves of the Mg-treated plants were significantly higher than those of the non-treated plants under Al stress. Compared with the non-treated plants under Al stress, the Mg-treated plants exhibited a significantly high level of NO3- and soluble protein content in the leaves, roots, and stems, but a low level of free amino acids. Furthermore, Mg significantly improved nitrogen accumulation and enhanced the transport of 15N from the roots to leaves. Overall, our results revealed that Mg alleviates Al-induced growth inhibition by enhancing antioxidant capacity and C-N metabolism in apple seedlings

    Fe-Based Metal–Organic Frameworks with Ferroptosis Generation Ability for Remodeling Chemotherapy of Non-small Cell Lung Cancer

    No full text
    Synergistic therapeutic nanomedicine with great biosafety was regarded as a promising strategy for cancer therapy in clinic. Due to the drug resistance and insufficient performance of chemotherapy, the response rate in non-small cell lung cancer is limited. As another effective strategy against tumor, ferroptosis may enhance the sensitivity of chemotherapy. Herein, we reported a biomimetic iron metal–organic framework (Fe-MOF) nanomedicine responding to the intracellular environment of non-small cell lung cancer therapy to accelerate tumor cell death by inducing the ferroptosis and apoptosis of tumor cells. We demonstrated that the doxorubicin (DOX)-loaded biomimetic Fe-MOF (mFe-MOFDOX) could dramatically promote degradation for Fe2+ generation and release of DOX in the intracellular acidic microenvironment. The mFe-MOFDOX nanoparticles enhanced the generation of reactive oxygen species (ROS) to induce comparable glutathione peroxidase 4 (GPX4)-mediated ferroptosis and assisted DOX-mediated apoptosis. Eventually, the combination of biomimetic nanoparticle-induced ferroptosis and chemotherapy-induced apoptosis inhibited tumor growth and lung metastasis, suggesting the promising potential of ferroptosis induction for promoting non-small cell lung cancer chemotherapy

    Transcriptome and Metabolome Analysis Reveals the Effect of Nitrogen–Potassium on Anthocyanin Biosynthesis in “Fuji” Apple

    No full text
    Nitrogen (N) and potassium (K) have significant effects on apple peel color. To further understand the molecular mechanism of N–K regulation of apple color, we analyzed the apple peel under different N and K treatments using isotope labeling, transcriptomics, and metabolomics. Under high N treatments, fruit red color and anthocyanin content decreased significantly. High N decreased the 13C distribution rate and increased the Ndff values of fruits, while K increased the expression of MdSUTs and MdSOTs and promoted 13C transportation to fruits. Anthocyanin-targeted metabonomics and transcriptome analysis revealed that high N downregulated the expression of structural genes related to the anthocyanin synthesis pathway (MdPAL, Md4CL, MdF3H, MdANS, and MdUFGT) and their regulators (MdMYBs and MdbHLHs), and also decreased some metabolites contents. K alleviated this inhibition and seven anthocyanins were regulated by N–K. Our results improve the understanding of the synergistic regulation of apple fruit coloring by N–K

    Identification and Characterization of Multiple Similar Ligand-binding Repeats in Filamin: IMPLICATION ON FILAMIN-MEDIATED RECEPTOR CLUSTERING AND CROSS-TALK*

    No full text
    The actin-binding protein filamin links membrane receptors to the underlying cytoskeleton. The cytoplasmic domains of these membrane receptors have been shown to bind to various filamin immunoglobulin repeats. Notably, among 24 human filamin repeats, repeat 17 was reported to specifically bind to platelet receptor glycoprotein Ibα and repeat 21 to integrins. However, a complete sequence alignment of all 24 human filamin repeats reveals that repeats 17 and 21 actually belong to a distinct filamin repeat subgroup (containing repeats 4, 9, 12, 17, 19, 21, and 23) that shares a conserved ligand-binding site. Using isothermal calorimetry and NMR analyses, we show that all repeats in this subgroup can actually bind glycoprotein Ibα, integrins, and a cytoskeleton regulator migfilin in similar manners. These data provide a new view on the ligand specificity of the filamin repeats. They also suggest a multiple ligand binding mechanism where similar repeats within a filamin monomer may promote receptor clustering or receptor cross-talking for regulation of the cytoskeleton organization and diverse filamin-mediated cellular activities
    corecore