5,456 research outputs found

    Improved energy estimates for a class of time-dependent perturbed Hamiltonians

    Full text link
    We consider time-dependent perturbations which are relatively bounded with respect to the square root of an unperturbed Hamiltonian operator, and whose commutator with the latter is controlled by the full perturbed Hamiltonian. The perturbation is modulated by two auxiliary parameters, one regulates its intensity as a prefactor and the other controls its time-scale via a regular function, whose derivative is compactly supported in a finite interval. We introduce a natural generalization of energy conservation in the case of time-dependent Hamiltonians: the boundness of the two-parameter unitary propagator for the physical evolution with respect to n/2n/2-th power energy norm for all n∈Zn\in\mathbb{Z}. We provide bounds of the n/2n/2-th power energy norms, uniformly in time and the time-scale parameter, for the unitary propagators, generated by the time-dependent perturbed Hamiltonian and by the unperturbed Hamiltonian in the interaction picture. The physically interesting model of Landau-type Hamiltonians with an additional weak and time-slowly-varying electric potential of unit drop is included in this framework.Comment: 20 page

    SR-FTiR microscopy and FTIR imaging in the earth sciences

    Full text link
    During the last decades, several books have been devoted to the application of spectroscopic methods in mineralogy. Several short courses and meetings have addressed particular aspects of spectroscopy, such as the analysis of hydrous components in minerals and Earth materials. In these books, complete treatment of the infrared theory and practical aspects of instrumentation and methods, along with an exhaustive list of references, can be found. The present chapter is intended to cover those aspects of infrared spectroscopy that have been developed in the past decade and are not included in earlier reviews such as Volume 18 of Reviews in Mineralogy. These new topics involve primarily: (1) the use of synchrotron radiation (SR), which, although not a routine method, is now rather extensively applied in infrared studies, in particular those requiring ultimate spatial and time resolution and the analysis of extremely small samples (a few tens of micrometers); (2) the development of imaging techniques also for foreseen time resolved studies of geo-mineralogical processes and environmental studies.Comment: 36 pages, 24 figures - Reviews in Mineralogy & Geochemistry - Vol. 78 (2013) in pres

    Observation of Scissors Modes in solid state systems with a SQUID

    Full text link
    The occurrence of scissors modes in crystals that have deformed ions in their cells has been predicted some time ago. The theoretical value of their energy is rather uncertain, however, ranging between 10 and a few tenths of eV, with the corresponding widths of 10^-7, 10^-6 eV. Their observation by resonance fluorescence experiments therefore requires a photon spectrometer covering a wide energy range with a very high resolving power. We propose and discuss a new experiment in which such difficulties are overcome by measuring with a SQUID the variation of the magnetic field associated with the excitation of scissors modes.Comment: 8 pages, 2 figure

    The Haldane model and its localization dichotomy

    Get PDF
    Gapped periodic quantum systems exhibit an interesting Localization Dichotomy, which emerges when one looks at the localization of the optimally localized Wannier functions associated to the Bloch bands below the gap. As recently proved, either these Wannier functions are exponentially localized, as it happens whenever the Hamiltonian operator is time-reversal symmetric, or they are delocalized in the sense that the expectation value of |x| 2 diverges. Intermediate regimes are forbidden. Following the lesson of our Maestro, to whom this contribution is gratefully dedicated, we find useful to explain this subtle mathematical phenomenon in the simplest possible model, namely the discrete model proposed by Haldane [10]. We include a pedagogical introduction to the model and we explain its Localization Dichotomy by explicit analytical arguments. We then introduce the reader to the more general, model-independent version of the dichotomy proved in [19]

    Molecular simulation of the phase behavior of noble gases using accurate two-body and three-body intermolecular potentials

    Get PDF
    Gibbs ensemble Monte Carlo simulations are reported for the vapor- liquid phase coexistence of argon, krypton, and xenon. The calculations employ accurate two-body potentials in addition to contributions from three-body dispersion interactions resulting from third-order triple-dipole, dipole-dipole-quadrupole, dipole- quadrupole-quadrupole, quadrupole-quadrupole-quadrupole, and fourth- order triple- dipole terms. It is shown that vapor-liquid equilibria are affected substantially by three-body interactions. The addition of three-body interactions results in good overall agreement of theory with experimental data. In particular, the subcritical liquid- phase densities are predicted accurately. (C) 1999 American Institute of Physics. S0021- 9606(99)50728-9

    Diffusion-aggregation processes with mono-stable reaction terms

    Get PDF
    This paper analyses front propagation of the equation uτ=[D(u)vx]x+f(v)      τ<0,x∈Ru_\tau=[D(u)v_x]_x +f(v) \;\;\; \tau < 0, x \in \mathbb{R} where ff is a monostable (ie Fisher-type) nonlinear reaction term and D(v)D(v) changes its sign once, from positive to negative values,in the interval v∈[0,1] v \in[0,1] where the process is studied. This model equation accounts for simultaneous diffusive and aggregative behaviors of a population dynamic depending on the population density vv at time τ\tau and position xx. The existence of infinitely many travelling wave solutions is proven. These fronts are parametrized by their wave speed and monotonically connect the stationary states u = 0 and v = 1. In the degenerate case, i.e. when D(0) and/or D(1) = 0, sharp profiles appear, corresponding to the minimum wave speed. They also have new behaviors, in addition to those already observed in diffusive models, since they can be right compactly supported, left compactly supported, or both. The dynamics can exhibit, respectively, the phenomena of finite speed of propagation, finite speed of saturation, or both

    Aggregative movement and front propagation for bi-stable population models

    Get PDF
    Front propagation for the aggregation-diffusion-reaction equation is investigated, where f is a bi-stable reaction-term and D(v) is a diffusion coefficient with changing sign, modeling aggregating-diffusing processes. We provide necessary and sufficient conditions for the existence of traveling wave solutions and classify them according to how or if they attain their equilibria at finite times. We also show that the dynamics can exhibit the phenomena of finite speed of propagation and/or finite speed of saturation
    • …
    corecore