207 research outputs found

    Long-range, Non-local Switching of Spin Textures in a Frustrated Antiferromagnet

    Full text link
    Antiferromagnetic spintronics is an emerging area of quantum technologies that leverage the coupling between spin and orbital degrees of freedom in exotic materials. Spin-orbit interactions allow spin or angular momentum to be injected via electrical stimuli to manipulate the spin texture of a material, enabling the storage of information and energy. In general, the physical process is intrinsically local: spin is carried by an electrical current, imparted into the magnetic system, and the spin texture then rotates. The collective excitations of complex spin textures have rarely been utilized in this context, even though they can in principle transport spin over much longer distances, using much lower power. In this study, we show that spin information can be transported and stored non-locally in the material Fex_xNbS2_2. We propose that collective modes leverage the strong magnetoelastic coupling in the system to achieve this, revealing a novel way to store spin information in complex magnetic systemsComment: 14 pages, 4 figures, supplement available on reques

    Antiferromagnetic Switching Driven by the Collective Dynamics of a Coexisting Spin Glass

    Full text link
    The theory behind the electrical switching of antiferromagnets is premised on the existence of a well defined broken symmetry state that can be rotated to encode information. A spin glass is in many ways the antithesis of this state, characterized by an ergodic landscape of nearly degenerate magnetic configurations, choosing to freeze into a distribution of these in a manner that is seemingly bereft of information. In this study, we show that the coexistence of spin glass and antiferromagnetic order allows a novel mechanism to facilitate the switching of the antiferromagnet Fe1/3+δ_{1/3+\delta}NbS2_2, which is rooted in the electrically-stimulated collective winding of the spin glass. The local texture of the spin glass opens an anisotropic channel of interaction that can be used to rotate the equilibrium orientation of the antiferromagnetic state. The use of a spin glass' collective dynamics to electrically manipulate antiferromagnetic spin textures has never been applied before, opening the field of antiferromagnetic spintronics to many more material platforms with complex magnetic textures.Comment: 7 pages, 4 Figures, supplement available on reasonable reques

    Discovery of Charge Order in the Transition Metal Dichalcogenide Fex_{x}NbS2_2

    Full text link
    The Fe intercalated transition metal dichalcogenide (TMD), Fe1/3_{1/3}NbS2_2, exhibits remarkable resistance switching properties and highly tunable spin ordering phases due to magnetic defects. We conduct synchrotron X-ray scattering measurements on both under-intercalated (xx = 0.32) and over-intercalated (xx = 0.35) samples. We discover a new charge order phase in the over-intercalated sample, where the excess Fe atoms lead to a zigzag antiferromagnetic order. The agreement between the charge and magnetic ordering temperatures, as well as their intensity relationship, suggests a strong magnetoelastic coupling as the mechanism for the charge ordering. Our results reveal the first example of a charge order phase among the intercalated TMD family and demonstrate the ability to stabilize charge modulation by introducing electronic correlations, where the charge order is absent in bulk 2H-NbS2_2 compared to other pristine TMDs

    Quantifying sources of variability in infancy research using the infant-directed-speech preference

    Get PDF
    Psychological scientists have become increasingly concerned with issues related to methodology and replicability, and infancy researchers in particular face specific challenges related to replicability: For example, high-powered studies are difficult to conduct, testing conditions vary across labs, and different labs have access to different infant populations. Addressing these concerns, we report on a large-scale, multisite study aimed at (a) assessing the overall replicability of a single theoretically important phenomenon and (b) examining methodological, cultural, and developmental moderators. We focus on infants’ preference for infant-directed speech (IDS) over adult-directed speech (ADS). Stimuli of mothers speaking to their infants and to an adult in North American English were created using seminaturalistic laboratory-based audio recordings. Infants’ relative preference for IDS and ADS was assessed across 67 laboratories in North America, Europe, Australia, and Asia using the three common methods for measuring infants’ discrimination (head-turn preference, central fixation, and eye tracking). The overall meta-analytic effect size (Cohen’s d) was 0.35, 95% confidence interval = [0.29, 0.42], which was reliably above zero but smaller than the meta-analytic mean computed from previous literature (0.67). The IDS preference was significantly stronger in older children, in those children for whom the stimuli matched their native language and dialect, and in data from labs using the head-turn preference procedure. Together, these findings replicate the IDS preference but suggest that its magnitude is modulated by development, native-language experience, and testing procedure. (This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 798658.

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Search for anomalous production of events with three or more leptons in pp collisions at √s = 8TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.A search for physics beyond the standard model in events with at least three leptons is presented. The data sample, corresponding to an integrated luminosity of 19.5fb-1 of proton-proton collisions with center-of-mass energy s=8TeV, was collected by the CMS experiment at the LHC during 2012. The data are divided into exclusive categories based on the number of leptons and their flavor, the presence or absence of an opposite-sign, same-flavor lepton pair (OSSF), the invariant mass of the OSSF pair, the presence or absence of a tagged bottom-quark jet, the number of identified hadronically decaying τ leptons, and the magnitude of the missing transverse energy and of the scalar sum of jet transverse momenta. The numbers of observed events are found to be consistent with the expected numbers from standard model processes, and limits are placed on new-physics scenarios that yield multilepton final states. In particular, scenarios that predict Higgs boson production in the context of supersymmetric decay chains are examined. We also place a 95% confidence level upper limit of 1.3% on the branching fraction for the decay of a top quark to a charm quark and a Higgs boson (t→cH), which translates to a bound on the left- and right-handed top-charm flavor-violating Higgs Yukawa couplings, λtcH and λctH, respectively, of |λtcH|2+|λctH|2<0.21
    corecore