385 research outputs found

    Two evolved supernova remnants with newly identified Fe-rich cores in the Large Magellanic Cloud*

    Get PDF
    Aims. We present a multi-wavelength analysis of the evolved supernova remnants MCSNR J0506−7025 and MCSNR J0527−7104 in the Large Magellanic Cloud. Methods. We used observational data from XMM-Newton, the Australian Telescope Compact Array, and the Magellanic Cloud Emission Line Survey to study their broad-band emission and used Spitzer and H i data to gain a picture of the environment into which the remnants are expanding. We performed a multi-wavelength morphological study and detailed radio and X-ray spectral analyses to determine their physical characteristics. Results. Both remnants were found to have bright X-ray cores, dominated by Fe L-shell emission, which is consistent with reverse shock-heated ejecta with determined Fe masses in agreement with Type Ia explosion yields. A soft X-ray shell, which is consistent with swept-up interstellar medium, was observed in MCSNR J0506−7025, suggestive of a remnant in the Sedov phase. Using the spectral fit results and the Sedov self-similar solution, we estimated the age of MCSNR J0506−7025 to be ~16−28 kyr, with an initial explosion energy of (0.07−0.84) × 1051 erg. A soft shell was absent in MCSNR J0527−7104, with only ejecta emission visible in an extremely elongated morphology that extends beyond the optical shell. We suggest that the blast wave has broken out into a low density cavity, allowing the shock heated ejecta to escape. We find that the radio spectral index of MCSNR J0506−7025 is consistent with the standard −0.5 for supernova remnants. Radio polarisation at 6 cm indicates a higher degree of polarisation along the western front and at the eastern knot with a mean fractional polarisation across the remnant of P ≅ (20 ± 6)%. Conclusions. The detection of Fe-rich ejecta in the remnants suggests that both resulted from Type Ia explosions. The newly identified Fe-rich cores in MCSNR J0506−7025 and MCSNR J0527−7104 make them members of the expanding class of evolved Fe-rich remnants in the Magellanic Clouds

    Dark matter and Colliders searches in the MSSM

    Full text link
    We study the complementarity between dark matter experiments (direct detection and indirect detections) and accelerator facilities (the CERN LHC and a s=1\sqrt{s}= 1 TeV e+e−e^+e^- Linear Collider) in the framework of the constrained Minimal Supersymmetric Standard Model (MSSM). We show how non--universality in the scalar and gaugino sectors can affect the experimental prospects to discover the supersymmetric particles. The future experiments will cover a large part of the parameter space of the MSSM favored by WMAP constraint on the relic density, but there still exist some regions beyond reach for some extreme (fine tuned) values of the supersymmetric parameters. Whereas the Focus Point region characterized by heavy scalars will be easily probed by experiments searching for dark matter, the regions with heavy gauginos and light sfermions will be accessible more easily by collider experiments. More informations on both supersymmetry and astrophysics parameters can be thus obtained by correlating the different signals.Comment: 25 pages, 10 figures, corrected typos and reference adde

    Search for the Lepton Flavor Violation Processes J/ψ→J/\psi \to Ότ\mu\tau and eτe\tau

    Full text link
    The lepton flavor violation processes J/ψ→ΌτJ/\psi \to \mu\tau and eτe\tau are searched for using a sample of 5.8×107\times 10^7 J/ψJ/\psi events collected with the BESII detector. Zero and one candidate events, consistent with the estimated background, are observed in J/ψ→Ότ,τ→eΜˉeΜτJ/\psi \to \mu\tau, \tau\to e\bar\nu_e\nu_{\tau} and J/ψ→eτ,τ→ΌΜˉΌΜτJ/\psi\to e\tau, \tau\to\mu\bar\nu_{\mu}\nu_{\tau} decays, respectively. Upper limits on the branching ratios are determined to be Br(J/ψ→Ότ)<2.0×10−6Br(J/\psi\to\mu\tau)<2.0 \times 10^{-6} and Br(J/ψ→eτ)<8.3×10−6Br(J/\psi \to e\tau) < 8.3 \times10^{-6} at the 90% confidence level (C.L.).Comment: 9 pages, 2 figure

    Neutralino Gamma-ray Signals from Accreting Halo Dark Matter

    Get PDF
    There is mounting evidence that a self-consistent model for particle cold dark matter has to take into consideration spatial inhomogeneities on sub-galactic scales seen, for instance, in high-resolution N-body simulations of structure formation. Also in more idealized, analytic models, there appear density enhancements in certain regions of the halo. We use the results from a recent N-body simulation of the Milky Way halo and investigate the gamma-ray flux which would be produced when a specific dark matter candidate, the neutralino, annihilates in regions of enhanced density. The clumpiness found on all scales in the simulation results in very strong gamma-ray signals which seem to already rule out some regions of the supersymmetric parameter space, and would be further probed by upcoming experiments, such as the GLAST gamma-ray satellite. As an orthogonal model of structure formation, we also consider Sikivie's simple infall model of dark matter which predicts that there should exist continuous regions of enhanced density, caustic rings, in the dark matter halo of the Milky Way. We find, however, that the gamma-ray signal from caustic rings is generally too small to be detectable.Comment: 15 pages, 11 figure

    A Search for Selectrons and Squarks at HERA

    Get PDF
    Data from electron-proton collisions at a center-of-mass energy of 300 GeV are used for a search for selectrons and squarks within the framework of the minimal supersymmetric model. The decays of selectrons and squarks into the lightest supersymmetric particle lead to final states with an electron and hadrons accompanied by large missing energy and transverse momentum. No signal is found and new bounds on the existence of these particles are derived. At 95% confidence level the excluded region extends to 65 GeV for selectron and squark masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Measurement of the inclusive isolated prompt photon cross-section in pp collisions at sqrt(s)= 7 TeV using 35 pb-1 of ATLAS data

    Get PDF
    A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy sqrt(s) = 7 TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<=|eta|<2.37 in the transverse energy range 45<=E_T<400GeV. The results are based on an integrated luminosity of 35 pb-1, collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section.Comment: 7 pages plus author list (18 pages total), 2 figures, 4 tables, final version published in Physics Letters

    Reducing heterotic M-theory to five dimensional supergravity on a manifold with boundary

    Get PDF
    This paper constructs the reduction of heterotic MM-theory in eleven dimensions to a supergravity model on a manifold with boundary in five dimensions using a Calabi-Yau three-fold. New results are presented for the boundary terms in the action and for the boundary conditions on the bulk fields. Some general features of dualisation on a manifold with boundary are used to explain the origin of some topological terms in the action. The effect of gaugino condensation on the fermion boundary conditions leads to a `twist' in the chirality of the gravitino which can provide an uplifting mechanism in the vacuum energy to cancel the cosmological constant after moduli stabilisation.Comment: 16 pages, RevTe
    • 

    corecore