908 research outputs found

    The Alternating Access Transport Mechanism in LacY

    Get PDF
    Lactose permease of Escherichia coli (LacY) is highly dynamic, and sugar binding causes closing of a large inward-facing cavity with opening of a wide outward-facing hydrophilic cavity. Therefore, lactose/H+ symport via LacY very likely involves a global conformational change that allows alternating access of single sugar- and H+-binding sites to either side of the membrane. Here, in honor of Stephan H. White’s seventieth birthday, we review in camera the various biochemical/biophysical approaches that provide experimental evidence for the alternating access mechanism

    NT2 Derived Neuronal and Astrocytic Network Signalling

    Get PDF
    A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns) expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As) exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality

    A fluidic device for the controlled formation and real-time monitoring of soft membranes self-assembled at liquid interfaces

    Get PDF
    The work was supported by the European Research Council Starting Grant (STROFUNSCAFF) and the Marie Curie Career Integration Grant (BIOMORPH). L.B. acknowledges fnancial support from the European Community through grant no. 618335 ‘FlowMat: Flow and Capillarity in Materials Science’ and ERC Starting Grant FLEXNANOFLOW no. 715475. Te authors thank Karla E. Inostroza-Brito for the constructive support in this work

    Predicting complexity perception of real world images

    Get PDF
    The aim of this work is to predict the complexity perception of real world images.We propose a new complexity measure where different image features, based on spatial, frequency and color properties are linearly combined. In order to find the optimal set of weighting coefficients we have applied a Particle Swarm Optimization. The optimal linear combination is the one that best fits the subjective data obtained in an experiment where observers evaluate the complexity of real world scenes on a web-based interface. To test the proposed complexity measure we have performed a second experiment on a different database of real world scenes, where the linear combination previously obtained is correlated with the new subjective data. Our complexity measure outperforms not only each single visual feature but also two visual clutter measures frequently used in the literature to predict image complexity. To analyze the usefulness of our proposal, we have also considered two different sets of stimuli composed of real texture images. Tuning the parameters of our measure for this kind of stimuli, we have obtained a linear combination that still outperforms the single measures. In conclusion our measure, properly tuned, can predict complexity perception of different kind of images

    A Plant Kavalactone Desmethoxyyangonin PreventsInflammation and Fulminant Hepatitis in Mice

    Get PDF
    Alpinia pricei Hayata is a Formosan plant which has been popularly used as nutraceutical or folk medicine for inflammation and various disorders. An active compound of the plant rhizomes, desmethoxyyangonin (DMY), was identified in this study for its novel effect against endotoxin lipopolysaccharide (LPS)-stimulated inflammation in murine macrophages and LPS/D-galactosamine (LPS/D-GalN)-induced fulminant hepatitis in mice. DMY was observed to significantly inhibit proliferation and activation of T cells ex vivo and the activity of several pro-inflammatory mediators in vitro. DMY also protected LPS/D-GalN−induced acute hepatic damages in mice through inhibiting aminotransferases activities and infiltrations of inflammatory macrophages, neutrophils and pathogenic T cells into the liver tissues. In addition, pretreatment with DMY significantly improved the survival rate of LPS/D-GalN−treated mice to 90% (9/10), compared to LPS/D-GalN−treated group (40%, 4/10). UPLC/MS platform-based comparative metabolomics approach was used to explore the serum metabolic profile in fulminant hepatic failure (FHF) mice with or without the DMY pretreatment. The results showed that LPS/D-GalN−induced hepatic damage is likely through perturbing amino acid metabolism, which leads to decreased pyruvate formation via catalysis of aminotransferases, and DMY treatment can prevent to a certain degree of these alterations in metabolic network in mouse caused by LPS/D-GalN. Mechanistic investigation demonstrated that DMY protects LPS or LPS/D-GalN−induced damages in cell or liver tissues mainly through de-regulating IKK/NFκB and Jak2/STAT3 signaling pathways. This report provides evidence-based knowledge to support the rationale for the use of A. pricei root extract in anti-inflammation and also its new function as hepatoprotetive agent against fulminant hepatitis

    Effects of Four Host Plants on Biology and Food Utilization of the Cutworm, Spodoptera litura

    Get PDF
    Effects of four host plants, tobacco, Chinese cabbage, cowpea and sweet potato, on larval and pupal development and survival, and longevity and fecundity of adults of Spodoptera litura (F) (Lepidoptera: Noctuidae), were studied under laboratory conditions (26° C, 60–80% RH), as was the utilization of the four host plants and adaptation on tobacco. All of the biological parameters included in the study were affected by the host plants. In a choice test, S. litura females oviposited most on Chinese cabbage, least on tobacco, and intermediate on cowpea and sweet potato. S. litura larvae developed differently on the four host plants, from shortest to longest in the following order: Chinese cabbage, cowpea, sweet potato, and tobacco. Pupal development was shorter on cowpea than on the other three host plants, and males generally developed longer than females. More females than males were found among emerged adults, and male adults lived 1–2 d longer than females. Larvae survived best on cowpea (81.6%), followed by Chinese cabbage (75.5%), then sweet potato (66.1%), and worst on tobacco (49.2%). Pupal survival rates were relatively high (91.4 – 95.9%) in all four host plant treatments, although that on sweet potato was lower than those on the other three host plants. Pupal weights on tobacco and sweet potato were similar, but both were lower than those on Chinese cabbage and cowpea. Generally, male pupae weighed less than female pupae. Numbers of eggs oviposited by female S. litura were highest on sweet potato, followed by those on cowpea, Chinese cabbage, and lowest on tobacco. Relative food consumption rate was highest on sweet potato, followed by that on cowpea, Chinese cabbage, and lowest on tobacco. In contrast, S. litura larvae that fed on tobacco had higher efficiency of conversion of digested food, highest efficiency of conversion of ingested food, and lowest approximate digestibility as compared with larvae that fed on other host plants. The potential causes for S. litura outbreaks on tobacco are discussed

    Role of oxidative stress and intracellular glutathione in the sensitivity to apoptosis induced by proteasome inhibitor in thyroid cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The proteasome inhibitor bortezomib has shown impressive clinical activity alone and in combination with conventional and other novel agents for the treatment of multiple myeloma (MM) and some solid cancers. Although bortezomib is known to be a selective proteasome inhibitor, the downstream mechanisms of cytotoxicity and drug resistance are poorly understood.</p> <p>Methods</p> <p>Proteasome activity, intracellular glutathione (GSH) and ROS levels, as well as activities of GSH synthesis enzymes were measured using spectrophotometric methods. Cell death was analyzed using flow cytometry and caspase activity assay. The expression level of GSH synthesis enzymes were measured using real-time RT-PCR.</p> <p>Results</p> <p>At concentrations that effectively inhibited proteasome activity, bortezomib induced apoptosis in FRO cells, but not in ARO cells. Bortezomib elevated the amount of glutathione (GSH) and the treatment with bortezomib increased the level of mRNA for GCL, a rate-limiting enzyme in glutathione synthesis. Furthermore, depletion of GSH increases apoptosis induced by bortezomib, in contrast, repletion of GSH decreases bortezomib-mediated cell death.</p> <p>Conclusion</p> <p>GSH protects cells from proteasome inhibition-induced oxidative stress and glutathione-dependent redox system might play an important role in the sensitivity to proteasome inhibition-induced apoptosis.</p

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Diammonium Glycyrrhizinate Upregulates PGC-1α and Protects against Aβ1–42-Induced Neurotoxicity

    Get PDF
    Mitochondrial dysfunction is a hallmark of beta-amyloid (Aβ)-induced neurotoxicity in Alzheimer's disease (AD), and is considered an early event in AD pathology. Diammonium glycyrrhizinate (DG), the salt form of Glycyrrhizin, is known for its anti-inflammatory effects, resistance to biologic oxidation and membranous protection. In the present study, the neuroprotective effects of DG on Aβ1–42-induced toxicity and its potential mechanisms in primary cortical neurons were investigated. Exposure of neurons to 2 µM Aβ1–42 resulted in significant viability loss and cell apoptosis. Accumulation of reactive oxygen species (ROS), decreased mitochondrial membrane potential, and activation of caspase-9 and caspase-3 were also observed after Aβ1–42 exposure. All these effects induced by Aβ1–42 were markedly reversed by DG treatment. In addition, DG could alleviate lipid peroxidation and partially restore the mitochondrial function in Aβ1–42-induced AD mice. DG also significantly increased the PGC-1α expression in vivo and in vitro, while knocking down PGC-1α partially blocked the protective effects, which indicated that PGC-1α contributed to the neuroprotective effects of DG. Furthermore, DG significantly decreased the escape latency and search distance and increased the target crossing times of Aβ1–42-induced AD mice in the Morris water maze test. Therefore, these results demonstrated that DG could attenuate Aβ1–42-induced neuronal injury by preventing mitochondrial dysfunction and oxidative stress and improved cognitive impairment in Aβ1–42-induced AD mice, indicating that DG exerted potential beneficial effects on AD
    corecore