3 research outputs found

    Performance of the ATLAS Track Reconstruction Algorithms in Dense Environments in LHC Run 2

    Get PDF
    International audienceWith the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13  TeV\text {TeV} for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb1^{-1} of data collected by the ATLAS experiment and simulation of proton–proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13  TeV\text {TeV} . The impact of charged-particle separations and multiplicities on the track reconstruction performance is discussed. The track reconstruction efficiency in the cores of jets with transverse momenta between 200 and 1600 GeV\text {GeV} is quantified using a novel, data-driven, method. The method uses the energy loss,  dE/dx{\text { d}}{} \textit{E}/d\textit{x} , to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is 0.061±0.006 (stat.)±0.014 (syst.)0.061 \pm 0.006\ {\text {(stat.)}} \pm 0.014\ {\text {(syst.)}} and 0.093±0.017 (stat.)±0.021 (syst.)0.093 \pm 0.017\ {\text {(stat.)}}\pm 0.021\ {\text {(syst.)}} for jet transverse momenta of 200–400  GeV\text {GeV} and 1400–1600  GeV\text {GeV} , respectively
    corecore