411 research outputs found
Advancements in tissue and organ 3D bioprinting: Current techniques, applications, and future perspectives
3D bioprinting techniques have emerged as a flexible tool in tissue engineering and regenerative medicine to fabricate or pattern functional 3D bio-structures with precise geometric designs, bridging the divergence between engineered and natural tissue constructs. A significantly increasing development has been achieved in understanding the relationship between the 3D-printing process and the structures, properties, and applications of the objects created. The ongoing advancement of novel biomaterial inks has enabled manufacturing of models and in vitro implants capable of achieving some level of success in preclinical trials. Remarkable progress in cell biology and biology-inspired computational design has assisted in achieving the latest milestone with planned tissue- or organ-like constructs having specific levels of functionality. However, biofabricated constructs still have a long way to go before reaching clinics. This review presents a picture of 3D bioprinting in the context of tissue engineering and regenerative medicine, with focus on biomaterials-related and design-centred aspects. Biomedical applications are described in detail in relation to major tissues or organs considered in the human body. Current technical limitations, challenges, future prospects and improvements are critically outlined and discussed
ZARISKI-LIKE SPACES OF CERTAIN MODULES
Abstract. Let R be a commutative ring with identity and M be a unitary R-module. The primary-like spectrum Spec L (M ) is the collection of all primary-like submodules Q such that M/Q is a primeful R-module. Here, M is defined to be RSP if rad(Q) is a prime submodule for all Q ∈ Spec L (M ). This class contains the family of multiplication modules properly. The purpose of this paper is to introduce and investigates a new Zariski space of an RSP module, called a Zariski-like space. In particular, we provide conditions under which the Zariski-like space of a multiplication module has a subtractive basis
Stationary Josephson effect in a weak-link between nonunitary triplet superconductors
A stationary Josephson effect in a weak-link between misorientated nonunitary
triplet superconductors is investigated theoretically. The non-self-consistent
quasiclassical Eilenberger equation for this system has been solved
analytically. As an application of this analytical calculation, the
current-phase diagrams are plotted for the junction between two nonunitary
bipolar wave superconducting banks. A spontaneous current parallel to the
interface between superconductors has been observed. Also, the effect of
misorientation between crystals on the Josephson and spontaneous currents is
studied. Such experimental investigations of the current-phase diagrams can be
used to test the pairing symmetry in the above-mentioned superconductors.Comment: 6 pages and 6 figure
Origin and control of spin currents in a magnetic triplet Josephson junction
We study the appearance of a Josephson spin current in a model triplet
superconductor junction with a magnetically-active tunnelling barrier. We find
three distinct mechanisms for producing a spin current, and we provide a
detailed discussion of the symmetry properties and the physical origins of
each. By combining these three basic mechanisms, we find that it is possible to
exercise fine control over the spin currents. In particular, we show that
unlike the charge current, the spin currents on either side of the barrier need
not be identical.Comment: 5 pages, 4 figures, RevTe
Attraction and diffusion in nature-inspired optimization algorithms
Nature-inspired algorithms usually use some form of attraction and diffusion as a mechanism for exploitation and exploration. In this paper, we investigate the role of attraction and diffusion in algorithms and their ways in controlling the behaviour and performance of nature-inspired algorithms. We highlight different ways of the implementations of attraction in algorithms such as the firefly algorithm, charged system search, and the gravitational search algorithm. We also analyze diffusion mechanisms such as random walks for exploration in algorithms. It is clear that attraction can be an effective way for enhancing exploitation, while diffusion is a common way for exploration. Furthermore, we also discuss the role of parameter tuning and parameter control in modern metaheuristic algorithms, and then point out some key topics for further research
Fitness Varying Gravitational Constant in GSA
Gravitational Search Algorithm (GSA) is a recent metaheuristic algorithm inspired by
Newton's law of gravity and law of motion. In this search process, position change is based on the calculation of step size which depends upon a constant namely, Gravitational Constant (G). G is an exponentially decreasing function throughout the search process. Further, inspite of having different masses, the value of G remains same for each agent, which may cause inappropriate step size of agents for the next move, and thus leads the swarm towards stagnation or sometimes skipping the true optima.
To overcome stagnation, we first propose a gravitational constant having different scaling characteristics for different phase of the search process. Secondly, a dynamic behavior is introduced in this proposed gravitational constant which varies according to the fitness of the agents. Due to this behavior, the gravitational constant will be different for every agent based on its fitness and thus will help in controlling the acceleration and step sizes of the agents which further improve exploration and exploitation of the solution search space. The proposed strategy is tested over 23 well-known classical benchmark functions and 11 shifted and biased benchmark functions. Various statistical analyses and a comparative study with original GSA, Chaos-based GSA (CGSA), Bio-geography Based Optimization (BBO) and DBBO has been carried out
A survey of fertility preservation options available to cancer patients around the globe
Purpose: Oncofertility focuses on providing fertility and endocrine-sparing options to patients who undergo life-preserving but gonadotoxic cancer treatment. The resources needed to meet patient demand often are fragmented along disciplinary lines. We quantify assets and gaps in oncofertility care on a global scale. Methods: Survey-based questionnaires were provided to 191 members of the Oncofertility Consortium Global Partners Network, a National Institutes of Health–funded organization. Responses were analyzed to measure trends and regional subtleties about patient oncofertility experiences and to analyze barriers to care at sites that provide oncofertility services. Results: Sixty-three responses were received (response rate, 25%), and 40 were analyzed from oncofertility centers in 28 countries. Thirty of 40 survey results (75%) showed that formal referral processes and psychological care are provided to patients at the majority of sites. Fourteen of 23 respondents (61%) stated that some fertility preservation services are not offered because of cultural and legal barriers. The growth of oncofertility and its capacity to improve the lives of cancer survivors around the globe relies on concentrated efforts to increase awareness, promote collaboration, share best practices, and advocate for research funding. Conclusion: This survey reveals global and regional successes and challenges and provides insight into what is needed to advance the field and make the discussion of fertility preservation and endocrine health a standard component of the cancer treatment plan. As the field of oncofertility continues to develop around the globe, regular assessment of both international and regional barriers to quality care must continue to guide process improvements
Global mortality from dementia : Application of a new method and results from the Global Burden of Disease Study 2019
Introduction Dementia is currently one of the leading causes of mortality globally, and mortality due to dementia will likely increase in the future along with corresponding increases in population growth and population aging. However, large inconsistencies in coding practices in vital registration systems over time and between countries complicate the estimation of global dementia mortality. Methods We meta-analyzed the excess risk of death in those with dementia and multiplied these estimates by the proportion of dementia deaths occurring in those with severe, end-stage disease to calculate the total number of deaths that could be attributed to dementia. Results We estimated that there were 1.62 million (95% uncertainty interval [UI]: 0.41-4.21) deaths globally due to dementia in 2019. More dementia deaths occurred in women (1.06 million [0.27-2.71]) than men (0.56 million [0.14-1.51]), largely but not entirely due to the higher life expectancy in women (age-standardized female-to-male ratio 1.19 [1.10-1.26]). Due to population aging, there was a large increase in all-age mortality rates from dementia between 1990 and 2019 (100.1% [89.1-117.5]). In 2019, deaths due to dementia ranked seventh globally in all ages and fourth among individuals 70 and older compared to deaths from other diseases estimated in the Global Burden of Disease (GBD) study. Discussion Mortality due to dementia represents a substantial global burden, and is expected to continue to grow into the future as an older, aging population expands globally.Peer reviewe
The global burden of adolescent and young adult cancer in 2019: a systematic analysis for the Global Burden of Disease Study 2019
Background: In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15–39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods: Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15–39 years to define adolescents and young adults. Findings: There were 1·19 million (95% UI 1·11–1·28) incident cancer cases and 396 000 (370 000–425 000) deaths due to cancer among people aged 15–39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59·6 [54·5–65·7] per 100 000 person-years) and high-middle SDI countries (53·2 [48·8–57·9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14·2 [12·9–15·6] per 100 000 person-years) and middle SDI (13·6 [12·6–14·8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23·5 million (21·9–25·2) DALYs to the global burden of disease, of which 2·7% (1·9–3·6) came from YLDs and 97·3% (96·4–98·1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation: Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Funding: Bill & Melinda Gates Foundation, American Lebanese Syrian Associated Charities, St Baldrick's Foundation, and the National Cancer Institute
Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019 : a systematic analysis for the Global Burden of Disease Study 2019
Background: Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods: Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (>= 65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0-100 based on the 2.5th and 97.5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target-1 billion more people benefiting from UHC by 2023-we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings: Globally, performance on the UHC effective coverage index improved from 45.8 (95% uncertainty interval 44.2-47.5) in 1990 to 60.3 (58.7-61.9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2.6% [1.9-3.3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010-2019 relative to 1990-2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0.79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388.9 million (358.6-421.3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3.1 billion (3.0-3.2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968.1 million [903.5-1040.3]) residing in south Asia. Interpretation: The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people-the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close-or how far-all populations are in benefiting from UHC
- …