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Abstract

Gravitational Search Algorithm (GSA) is a recent metaheuristic algorithm inspired by
Newton’s law of gravity and law of motion. In this search process, position change is based
on the calculation of step size which depends upon a constant namely, Gravitational Constant
(G). G is an exponentially decreasing function throughout the search process. Further, in-
spite of having different masses, the value of G remains same for each agent, which may
cause inappropriate step size of agents for the next move, and thus leads the swarm towards
stagnation or sometimes skipping the true optima.

To overcome stagnation, we first propose a gravitational constant having different scaling
characteristics for different phase of the search process. Secondly, a dynamic behavior is
introduced in this proposed gravitational constant which varies according to the fitness of the
agents. Due to this behavior, the gravitational constant will be different for every agent based
on its fitness and thus will help in controlling the acceleration and step sizes of the agents
which further improve exploration and exploitation of the solution search space.

The proposed strategy is tested over 23 well-known classical benchmark functions and 11
shifted and biased benchmark functions. Various statistical analyses and a comparative study
with original GSA, Chaos-based GSA (CGSA), Bio-geography Based Optimization (BBO)
and DBBO has been carried out.

Keywords
Gravitational Search Algorithm (GSA), Swarm Intelligence, Gravitational Constant, Exploration,

Exploitation.

1 Introduction

Gravitational search algorithm [13] is relatively new and very efficient optimization method belongs
to the family of nature-inspired optimization algorithms. GSA is inspired by Newton’s law of
gravity and law of motion. The movement of agents (individuals) occurs under the influence of
gravity forces [15]. Due to the gravity forces, a global movement generates which drives all agents
towards the agents having heavier masses [6]. The details of the working of GSA are given in
Section 2.

GSA has been modified in several ways to improve its performance. Inspired by Particle swarm
optimization, Seyedali Mirjalili et al. [11] proposed a variant of GSA, namely PSOGSA in which
each agent memorizes its previous best position. To improve the exploration and exploitation
ability of GSA, Sarafrazi et al. [15] proposed a disruption operator. Doraghinejad et al. [4]
improved the convergence characteristic of GSA, by introducing a new operator based on black hole
phenomena. Seyedali Mirjalili et al. [12] improved the exploitation ability of GSA by incorporating
the Gbest solution (best solution obtained so far) in the search strategy of GSA. To improve the
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convergence speed of GSA, Shaw et al. [17] initialized the swarm using opposition-based learning.
Chen et al [3] introduced a hybrid GSA, in which a multi-type local improvement scheme is used as
a local search operator. To improve the exploitation ability of GSA, Susheel et al. [7] introduced
the encircle behavior of grey wolf in GSA.

In GSA, the concept of the dynamic (adaptive) parameter is proposed by Seyedali Mirjalili
et al. [10]. In the proposed variant, the gravitational constant (G) adapts the chaotic behaviour
using 10 different chaotic maps. For a fix chaotic map, G follows a fix chaotic nature throughout
the search process. In [14], G is controlled by the fuzzy logic controller to improve the efficiency
of GSA. In [1], design of experiment (DOE) method is used to tune the GSA parameters.

A proper balance between exploration and exploitation is required for an efficient nature-
inspired algorithm. According to [19], good exploration ensures a thorough search in the search
space while exploitation concentrates in the neighborhood of the best solution to ensure optimal-
ity. At the initial phase of search process the solutions may be far from the optimum solution,
hence a large step size is required at the beginning (exploration) and when the solutions are con-
verged towards an optimum solution, the small step size is needed for better exploitation in the
neighborhood of the solution [8].

To improve the exploitation and exploration properties of the original gravitational search algo-
rithm, a modified version of GSA called Fitness Varying Gravitational Constant in GSA (FVGGSA)
is introduced in this paper. First, a gravitational constant having different scaling characteristics
for the different phase of the search process is employed to avoid the possibility of stagnation in
intermediate phases of search process. Further, each agent is incorporated with an ability to accel-
erate itself due to its individual gravitational constant which depends upon the fitness probability.

Therefore, both modifications have complementary advantages which provide a novel approach
of self adapting step size for the next move towards the optimum, resulting in a balanced trade-off
between exploration and exploitation properties of the algorithm.

To the best of the authors knowledge these kind of settings for gravitational constant which
incorporate both fitness of the agent and different scaling parameters for different phases of the
search process have not been proposed and implemented earlier in the literature. These two
modifications make the proposed variant more efficient than the other previous variants of GSA in
terms of dynamic parameters and novelty, respectively.

The remaining paper is organized as follows: Section 2 provides an overview of basic GSA.
Fitness varying Gravitational Constant in GSA is proposed in Section 3. Section 4 describes the
experiment results and comparative study. Finally the paper is concluded in section 5.

2 STANDARD GSA

Gravitational Search Algorithm (GSA) is a new swarm intelligence technique for optimization
developed by Rashedi et al [13]. This algorithm is inspired by the law of gravity and the law of
motion.

The GSA algorithm can be described as follows:
Consider the swarm of N agents, in which each agent Xi in the search space S is defined as:

Xi = (x1i , ....., x
d
i , ....., x

n
i ), ∀ i = 1, 2, ....., N (1)

Here, Xi shows the position of ith agent in n-dimensional search space S. The mass of each
agent depends upon its fitness value as follows:

qi(t) =
fiti(t)− worst(t)
best(t)− worst(t)

(2)

Mi(t) =
qi(t)∑N
j=1 qj(t)

, ∀ i = 1, 2, ....., N (3)

Here,
fiti(t) is the fitness value of agent Xi at iteration t,
Mi(t) is the mass of agent Xi at iteration t.
Worst(t) and best(t) are worst and best fitness of the current population, respectively.



The acceleration of ith agent in dth dimension is denoted by adi (t) and defined as:

adi (t) =
F di (t)

Mi(t)
(4)

Where F di (t) is the total force acting on the ith agent by a set of Kbest heavier masses in dth

dimension at iteration t. F di (t) is calculated as:

F di (t) =
∑

j∈KBEST,j 6=i

randjF
d
ij(t) (5)

Here, KBEST is the set of first K agents with the best fitness values and biggest masses and randj
is a uniform random number between 0 and 1. Kbest is a linearly decreasing function of time. The
value of Kbest will reduce in each iteration and at the end only one agent will apply force to the
other agents. At the tth iteration, the force applied on agent i from agent j in the dth dimension
is defined:

F dij(t) = G(t)
Mi(t)Mj(t)

Rij + ε
(xdi (t)− xdj (t)) (6)

Here, Rij(t) is the Euclidean distance between two agents, i and j. ε is a small number.
Finally, the acceleration of an agent in dth dimension is calculated as:

adi (t) =
∑

j∈KBEST,j 6=i

randjG(t)
Mj(t)

Rij + ε
(xdi (t)− xdj (t)), (7)

d = 1, 2, ..., n and i = 1, 2, ..., N .
G(t) is called gravitational constant and is a decreasing function of time:

G(t) = G0e
−α t

T (8)

G0 and α are constants and set to 100 and 20, respectively. T is the total number of iterations.
The velocity update equation of an agent Xi in dth dimension is given below:

vdi (t+ 1) = randi × vdi (t) + adi (t) (9)

Based on the velocity calculated in equation (9), the position of an agent Xi in dth dimension is
updated using position update equation as follow:

xdi (t+ 1) = xdi (t) + vdi (t+ 1) (10)

where vdi (t) and xdi (t) present the velocity and position of agent Xi in dth dimension, respectively.
randi is uniform random number in the interval [0, 1].

3 Fitness Varying Gravitational Constant in GSA

The robustness and effectiveness of a swarm based meta-heuristic algorithms depend upon the
balance between exploration and exploitation capabilities [5]. In the initial iterations of the solution
search process, exploration of search space is preferred. This can be obtained by allowing to attain
large step sizes by agents during early iterations. In the later iterations, exploitation of search
space is required to avoid the situation of skipping the global optima [16]. Thus the candidate
solutions should have small step sizes for exploitation in later iterations.

According to the velocity update equation of GSA (equation (9)), acceleration plays a crucial
role in balancing the exploration and exploitation. It is clear from equation (7) that the acceler-
ation is a function of gravitational constant G(t), masses Mi(t) and distances Rij . It is directly
proportional to gravitational constant G(t). For the higher value of G(t) the acceleration will be
higher hence step size will be larger, which causes exploration. Whereas the small value of G(t)
generates low acceleration and thus small step size in subsequent iterations will provide exploitation
of the search space.

Therefore, the performance of GSA depends upon the gravitational constant G(t) due to its
role as a controller of step size for agent’s movement. Mathematically, G(t) is an exponentially
decreasing function with respect to iterations by keeping scaling constant G0 same throughout
the search process. Due to this same value of scaling constant G0, throughout the search process,



Figure 1: Original G(t) Vs proposed G’(t)

Figure 2: Relation between Gnew(t) and G′(t)

gravitational constant G(t) does not significantly change over iterations. Therefore the step size of
agent’s movement also does not significantly change which further reduces the convergence speed
of the algorithm.

To overcome this deficiency and make GSA faster, a new gravitational constant is introduced
which have different scaling constants for different phase of the search process. A new gravitational
constant is a concatenation of the different exponentially decreasing functions for different phases
of the search process and defined as:

G′(t) = Ze−α
t
η (11)

where Z is scaling constant and is different for different phases of the search process. To apply
the above defined gravitational constant, the entire search process is divided into phases of equal
number of iterations, example 1000 (for this study) when the total number of iterations T = 5000.
Based on numerical experiments on selected test problems the values of scaling constant for various
phases are determined in Table 1. As expected, in initial phase, the value of Z is high, while in
the last phase, it is minimum. In general, the value of Z for different phases of the search process
can be obtained using function given below and is obtained by approximating the data of Table 1.

Table 1: Scaling constants for different phases of the search process

Z Range (in iterations)

100 0-1000
0.5 1001-2000
0.3 2001-3000
0.2 3001-4000
0.01 4001-5000



Z(x) = 1408e−(0.00529)x (12)

Here x is the mid point of the considered range of the phase. For each Z, t is the current iteration
and η is the maximum iteration of its corresponding range.
A comparison between original gravitational constant G(t) and the proposed G′(t) is shown in
Fig. 1. In Fig. 1, circles represent the effect of different values of Z in G′(t) with respect to
different phases of the search process. At these points, clearly, the value of G′ changes suddenly,
which prohibits the search process for stagnation. Since the reducing constant α is responsible to
navigate the search process from exploration to exploitation phase. This navigation provides the
good convergence speed to GSA. Therefore, to make the faster GSA, α is set to 10 in equation
(11).

Additionally, the requirement of exploration or exploitation can also be decided by the fitness
of an agent. Since the low fitness implies that the agent is not near the optima, less fit agents can
be recruited to explore the search space while high fit agents can be appointed to exploit their
neighborhood. Therefore, a dynamic behavior of G′(t) based on the fitness of agents is introduced.
The proposed fitness varying gravitational constant is defined as:

Gnew(t) = G′(t)(C − probi) (13)

Here C is a constant and probi is the probability related to ith agent and calculated as below:

probi =
0.9× fit(i)
maxfit

+ 0.1 (14)

In this equation fit(i) is the fitness value of ith agent and maxfit is the maximum fitness of any
agent in the current population. The fitness of an agent is calculated using the objective value as
follow:

fit(i) =

{
1 + abs(fi), if (fi < 0)

1
1+fi

, if (fi ≥ 0)
(15)

It is clear from equation (14) that the probability probi is proportional to fit(i). The GSA with
proposed fitness varying gravitational constant is named as Fitness Varying Gravitational Constant
GSA (FVGGSA).

From equation (7), a(t) ∝ G(t) which implies that a(t) ∝ G′(t), i.e. as G′(t) increases, a(t) and
thus exploration capability of GSA increases. Thus in order to have a better exploration capability
newly defined gravitational constant Gnew(t) should be larger than G′(t). That is

Gnew(t) > G′(t) or G′(t)× (C − probi) > G′(t)

⇒ (C − probi) > 1, (Since G′(t) > 0)

⇒ C > 1 + probi

From equation (14), 0.1 ≤ probi ≤ 1 and the average value of probi is 0.45. Thus we set the value
of constant C to be 1 + 0.45 = 1.45.
Now if C = 1.45, then the proposed gravitational constant becomes:

Gnew(t) = G′(t)× (1.45− probi) (16)

It is clear from equation (16) that when 0.1 ≤ probi < 0.45, or when fitness is relatively worse, then
Gnew(t) > G′(t), i.e. FVGGSA better explores when fitness has not reached at matured level. On
the other hand, when 0.45 < probi ≤ 1 or when fitness is relatively better then Gnew(t) < G′(t),
i.e. FVGGSA better exploits (Fig. 2). In case of probi = 0.45, which is very rare, Gnew(t) = G′(t).
Finally, due to fitness dependent Gnew(t), the search process becomes explorative in early iterations
while exploitative in later iterations. Fig. 3 illustrates the comparative behavior of Gnew(t) and
G(t) of an agent for benchmark functions f3, f17, f18, f21, f22 and f23 (refer section 4.1). It is
clear that for most of the problems, Gnew(t) ≥ G(t) in early iterations and Gnew(t) ≤ G(t) for
later iterations. The flow chart of so proposed FVGGSA is shown in Fig. 4.



4 Results and Discussion

4.1 Test bed under consideration

In this section, the proposed FVGGSA is tested over 23 test functions (test bed 1) and 11 shifted
and biased test functions (test bed 2) [10]. The benchmark functions of test bed 1 and 2 are listed
in Tables 2 and 3, respectively. In these Tables, Search Range denotes the domain of the function’s
search space, n indicates the dimension of function, C symbolizes the characteristics of benchmark
functions and AE is the acceptable error.

The characteristics (C ) of benchmark functions are classified into different categories like uni-
modal (U ), multimodal (M ), separable (S ) and non-separable (N ). Test bed 2 contains the bench-
mark functions having higher complexities due to their shift and bias nature.

4.2 Experimental setting

In order to validate the effectiveness and robustness of proposed algorithm, FVGGSA is compared
with a recent GSA variant, namely Chaotic GSA (CGSA) [10]. In CGSA, there are 10 different
variants (CGSA1 to CGSA10) based on 10 different chaotic maps. As per the original paper,
CGSA8 and CGSA9 are the best two variants than others. Therefore, FVGGSA is compared
with two best CGSA variants (CGSA8 and CGSA9) along with basic GSA, biogeography-based
optimization (BBO) [18] and Disruption in biogeography-based optimization (DBBO) [2]. This
comparison has been done over the test bed 1 with the popular experimental setting given in
section 4.2.1.
In order to check the robustness of the proposed FVGGSA, it is further tested over more complex
shifted and biased problems of test bed 2. To perform a fair comparison between FVGGSA and
CGSA, the parameter setting for this test bed has been adopted from [10] as it is. The detailed
description about the choice of the parameter settings can be found in [10]. The parameter setting
for test bed 2 is given in section 4.2.2.

4.2.1 Parameter setting for test bed 1

• The number of simulations/run =30,

• Swarm size=50,

• The stopping criteria is either acceptable error ( refer Table 2) has been achieved or maximum
number of function evaluations (which is set to be 200000) is reached,

• Parameters for the algorithms GSA [13], BBO [18], DBBO [2], CGSA8 [10] and CGSA9 [10]
are considered from the corresponding resources.

4.2.2 Parameter setting for test bed 2

• The number of simulations/run =20,

• Swarm size=30,

• The stopping criteria is the maximum number of function evaluations (which is set to be
20500) is reached,

• Parameters for all the variants of chaotic GSA [10] and GSA are adopted from their original
papers.

4.3 Result and statistical analysis of experiments

4.3.1 Test bed 1

The results of the considered algorithms over the benchmark functions of test bed 1 are listed in
Table 4. In this table, the criteria of comparison are standard deviation (SD), mean error (ME ),
average number of function evaluations (AFEs) along with the success rate (SR). AFEs, SR and
ME present the efficiency, reliability and accuracy of an algorithm, respectively. The bold entries
present the supremacy of an algorithm over others. Table 4 shows that most of the time FVGGSA
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Figure 4: Flowchart of Fitness Varying Gravitational Constant in GSA
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Figure 5: Boxplots (Analysis of average number of function evaluations for test bed 1)

dominates other algorithms with respect to efficiency, reliability and accuracy.
Further, to compare the algorithms on the basis of AFEs, boxplots analyses have been carried
out. From Fig. 5, it is clear that the boxplot of FVGGSA have less interquartile range and
medians as compared to GSA, CGSA8, CGSA9, BBO and DBBO which implies that FVGGSA
is more efficient over other considered algorithms. This difference may occur due to chance and
therefore data comparison test is required. It is clear from the Fig. 5 that the data used in the
boxplot analysis are not normally distributed. Therefore a non-parametric statistical test, the
Mann Whitney U rank sum test is applied.



Table 2: Benchmark functions (test bed 1)

Test problem Objective function Search Range Optimum Value n C AE

Sphere f1(x) =
∑n

i=1 x
2
i [-5.12, 5.12] f(0) = 0 30 U,S 1.00E − 05

De Jong f4 f2(x) =
∑n

i=1 i.(xi)
4 [-5.12 5.12] f(~0) = 0 30 U,S 1.00E − 05

Ackley f3(x) = −20 + e+ exp(−0.2
n

√∑n
i=1 xi

3)− exp( 1
n

∑n
i=1 cos (2πxi)xi) [-30, 30] f(0) = 0 30 M,N 1.0E − 05

Alpine f4(x) =
∑n

i=1 |xisin xi + 0.1xi| [-10, 10] f(0) = 0 30 M,S 1.0E − 05

Exponential f5(x) = −(exp(−0.5
∑n

i=1 xi
2)) + 1 [-1, 1] f(0) = −1 30 M,N 1.0E − 05

brown3 f6(x) =
∑n−1

i=1 (xi
2(xi+1)

2+1
+ xi+1

2xi
2+1

) [-1, 4] f(0) = 0 30 U,N 1.0E − 05

Schwefel 222 f7(x) =
∑n

i=1 |xi|+
∏n
i=1 |xi| [-10, 10] f(0) = 0 30 U,N 1.0E − 05

Axis parallel
hyper-ellipsoid

f8(x) =
∑n

i=1 i.x
2
i [-5.12, 5.12] f(0) = 0 30 U,S 1.0E − 05

Sum of differ- f9(x) =
∑n

i=1 |xi|
i+1 [−1, 1] f(~0) = 0 30 U,S 1.0E − 05

ent powers

Step function f10(x) =
∑n

i=1 (bxi + 0.5c)2 [-100 100] f(−0.5 ≤ x ≤
0.5) = 0

30 U,S 1.0E − 05

Rotated hyper-
ellipsoid

f11(x) =
∑n

i=1

∑i
j=1 x

2
j [-65.536,

65.536]
f(0) = 0 30 U,N 1.0E − 05

Levy montalvo
2

f12(x) = 0.1(sin2(3πx1) +
∑n−1

i=1 (xi − 1)2 × (1 + sin2(3πxi+1)) + (xn −
1)2(1 + sin2(2πxn))

[-5, 5] f(1) = 0 30 M,N 1.0E − 05

Beale f13(x) = [1.5− x1(1− x2)]2 + [2.25− x1(1− x22)]2+ [−4.5, 4.5] f(3, 0.5) = 0 2 U,N 1.0E − 05

[2.625− x1(1− x32)]2

Colville f14(x) = 100[x2− x21]2 + (1− x1)2 + 90(x4− x23)2 + (1− x3)2 + 10.1[(x2−
1)2 + (x4 − 1)2] + 19.8(x2 − 1)(x4 − 1)

[-10,10] f(~1) = 0 4 M,N 1.0E − 05

Branins‘s f15(x) = a(x2 − bx21 + cx1 − d)2 + e(1− f) cosx1 + e −5 ≤ x1 ≤ 10, f(−π, 12.275) 2 M,N 1.0E − 05

0 ≤ x2 ≤ 15 = 0.3979

2D Tripod f16(x) = p(x2)(1 + p(x1)) + |(x1 + 50p(x2)(1 − 2p(x1)))| + |(x2 + 50(1 −
2p(x2)))| where p(x) = 1 for x ≥ 0

[-100,100] f(0,−50) = 0 2 M,N 1.0E − 04

Shifted- f17(x) =
∑n

i=1 z
2
i + fbias, z = x− o, x = [x1, x2, ..., xn], o = [o1, o2..., on] [-100, 100] f(o) = fbias 10 U,S 1.00E − 05

parabola = −450

Shifted- f18(x) =
∑n

i=1(
∑i

j=1 zj)
2 + fbias [-100, 100] f(o) = fbias, 10 U,N 1.00E − 05

Schwefel 1.2 z = x− o, x = [x1, x2, ..., xn], o = [o1, o2..., on] = −450

Gear train f19(~x) =
(

1
6.931 −

x1x2

x3x4

)2
[12, 60] f(19, 16, 43, 49) 4 — 1.0E − 15

= 2.7× 10−12

Six-hump f20(x) = (4− 2.1x21 + x41/3)x21 + x1x2 + (−4 + 4x22)x
2
2 [-5, 5] f(−0.0898, 0.7126) 2 M,N 1.0E − 05

camel back = −1.0316

Easom’s func-
tion

f21(x) = −cosx1cosx2e
((−(x1−π)2−(x2−π)2)) [-100, 100] f(π, π) = −1 2 U,N 1.0E − 13

Hosaki f22(x) = (1− 8x1 + 7x21 − 7/3x31 + 1/4x41)x
2
2 exp(−x2) [0, 5], [0, 6] -2.3458 2 M,N 1.0E − 05

Problem subject to 0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 6

McCormick f23(x) = sin(x1 + x2) + (x1 − x2)2 − 3
2x1 + 5

2x2 + 1 −1.5 ≤ x1 ≤ 4, f(-0.547,-1.547) 30 M,N 1.0E − 04

−3 ≤ x2 ≤ 3 = −1.9133



Table 3: Shifted and biased benchmark functions (test bed 2) [10]

Objective function Search Range Optimum
Value

n C

F1(x) =
∑n

i=1(xi + 40)2 − 80 [-100, 100] fmin = −80 30 U

F2(x) =
∑n

i=1 |xi + 7|+
∏n
i=1 |xi + 7| − 80 [-10, 10] fmin = −80 30 U

F3(x) =
∑n

i=1(
∑i

j=1(xj + 60))2 − 80 [-100, 100] fmin = −80 30 U

F4(x) = max {|xi + 60|, 1 ≤ i ≤ n} − 80 [-100, 100] fmin = −80 30 U

F5(x) =
∑n

i=1 (| (xi + 60) + 0.5|)2 − 80 [-100, 100] fmin = −80 30 U

F6(x) =
∑n

i=1− (xi + 300) sin
(√
| (xi + 300) |

)
[-500, 500] fmin = 30 M

−418.9829× (32)

F7(x) =
∑n

i=1

[
(xi + 2)2 − 10cos (2π (xi + 2)) + 10

]
− 80 [-5.12, 5.12] fmin = −80 30 M

F8(x) = −20exp(−0.2
√

1
n

∑n
i=1(xi + 20)2)−exp( 1

n

∑n
i=1 cos (2π(xi+20)))+20+e−80 [-32, 32] fmin = −80 30 M

F9(x) = 1
4000

∑n
i=1 (xi + 400)2 −

∏n
i=1 cos

(
(xi+400)√

i

)
+ 1− 80 [-600, 600] fmin = −80 30 M

F10(x) = π
n

{
10sin (πy1) +

∑n−1
i=1 (yi − 1)2

[
1 + 10sin2 (πyi+1)

]
+ (yn − 1)2

}
+∑n

i=1 u ((xi + 30) , 10, 100, 4)− 80,

[-50, 50] fmin = −80 30 M

where, yi = 1 + (xi+30)+1
4 , u (xi, a, k,m) =


k (xi − a)m xi > a

0− a < xi < a

k (−xi − a)m xi < −a

F11(x) = 0.1
{
sin2 (3π (xi + 30)) +

∑n
i=1 ((xi + 30)− 1)2

[
1 + sin2 (3π (xi + 30) + 1)

]
[-50,50] fmin = −80 30 M

+ ((xn + 30)− 1)2
[
1 + sin2 (2π (xn + 30))

]}
+
∑n

i=1 u ((xi + 30) , 5, 100, 4)− 80



Table 4: Minimization results of test bed 1

TP Algorithm SD ME AFE SR

f1

FVGGSA 1.00545E-06 8.56969E-06 32708.33333 30
GSA 1.06073E-06 8.72981E-06 95813.33333 30
CGSA8 0.000326014 0.003587331 200000 0
CGSA9 0.000296758 0.003083037 200000 0
BBO 0.000381026 0.000816048 200000 0
DBBO 7.32694E-07 9.56895E-06 173261.6667 29

f2

FVGGSA 1.95728E-06 7.30023E-06 18651.66667 30
GSA 1.52829E-06 8.17682E-06 62826.66667 30
CGSA8 9.44466E-07 8.63861E-06 195010 30
CGSA9 1.79769E-06 7.62802E-06 192921.6667 30
BBO 1.65974E-06 8.11314E-06 122035 30
DBBO 1.55575E-06 8.60549E-06 115993.3333 30

f3

FVGGSA 6.92406E-07 9.39163E-06 65520 30
GSA 4.44256E-07 9.4113E-06 160883.3333 30
CGSA8 0.003942515 0.053256868 200000 0
CGSA9 0.00376299 0.050965244 200000 0
BBO 0.042374896 0.174415942 200000 0
DBBO 0.003651462 0.012267751 200000 0

f4

FVGGSA 4.07696E-07 9.49149E-06 59978.33333 30
GSA 4.00534E-07 9.40617E-06 154651.6667 30
CGSA8 0.001549659 0.023570243 200000 0
CGSA9 0.001621385 0.023814067 200000 0
BBO 0.001613291 0.009808612 200000 0
DBBO 0.000325028 0.00076459 200000 0

f5

FVGGSA 8.007E-07 8.83583E-06 30910 30
GSA 8.1726E-07 8.96516E-06 91156.66667 30
CGSA8 0.000172906 0.001765027 200000 0
CGSA9 0.000146393 0.001551888 200000 0
BBO 8.30753E-06 1.70658E-05 198063.3333 6
DBBO 1.33938E-05 3.11127E-05 200000 0

f6

FVGGSA 7.17376E-07 9.06744E-06 34360 30
GSA 9.60908E-07 8.918E-06 99436.66667 30
CGSA8 0.000737031 0.006326654 200000 0
CGSA9 0.000718023 0.005931577 200000 0
BBO 0.000152259 0.000363848 200000 0
DBBO 9.38179E-07 9.513E-06 183240 28

f7

FVGGSA 4.54212E-07 9.20562E-06 82226.66667 30
GSA 4.19962E-07 9.45941E-06 181631.6667 30
CGSA8 0.022057949 0.273234128 200000 0
CGSA9 0.018211343 0.268694784 200000 0
BBO 0.031361694 0.213726686 200000 0
DBBO 0.001492103 0.002438375 200000 0

f8

FVGGSA 9.83386E-07 8.82813E-06 38831.66667 30
GSA 7.32591E-07 9.0581E-06 109796.6667 30
CGSA8 0.003463022 0.027433071 200000 0
CGSA9 0.00249644 0.031423683 200000 0
BBO 0.005047 0.013401429 200000 0
DBBO 2.57678E-05 2.89363E-05 198366.6667 7



Table 4 Continued:

TP Algorithm SD ME AFE SR

f9

FVGGSA 2.41338E-06 6.44091E-06 10725 30
GSA 2.09E-06 7.39476E-06 46590 30
CGSA8 2.59442E-06 7.07505E-06 127248.3333 30
CGSA9 2.2068E-06 6.71658E-06 113008.3333 30
BBO 0.000503803 0.00069678 200000 0
DBBO 5.28231E-05 4.70202E-05 185148.3333 5

f10

FVGGSA 0 0 4316.666667 30
GSA 0 0 11375 30
CGSA8 0 0 15656.66667 30
CGSA9 0 0 15686.66667 30
BBO 0 0 58551.66667 30
DBBO 0 0 24601.66667 30

f11

FVGGSA 1.01012E-06 8.87152E-06 32681.66667 30
GSA 6.45608E-07 9.2917E-06 95475 30
CGSA8 0.000309836 0.003219302 200000 0
CGSA9 0.000251015 0.003258639 200000 0
BBO 0.053371002 0.147479446 200000 0
DBBO 0.00072175 0.00172012 200000 0

f12

FVGGSA 1.0255E-06 8.59766E-06 32926.66667 30
GSA 1.08817E-06 8.8444E-06 95508.33333 30
CGSA8 0.000429894 0.003092997 200000 0
CGSA9 0.000319062 0.003153544 200000 0
BBO 0.000375113 0.00088644 200000 0
DBBO 1.04111E-06 9.31676E-06 181406.6667 29

f13

FVGGSA 2.74244E-06 4.93008E-06 21693.33333 30
GSA 2.69049E-06 5.33222E-06 71498.33333 30
CGSA8 3.01076E-06 4.80294E-06 166498.3333 30
CGSA9 2.67967E-06 4.001E-06 156311.6667 30
BBO 0.148906748 0.038065174 197476.6667 1
DBBO 0.023836315 0.008202032 195848.3333 1

f14

FVGGSA 0.019985001 0.006282989 109688.3333 28
GSA 0.103028613 0.038774868 141136.6667 26
CGSA8 0.036267406 0.052121955 200000 0
CGSA9 0.00644022 0.030390784 199965 1
BBO 6.446884307 5.502358837 200000 0
DBBO 0.365423535 0.470397766 200000 0

f15

FVGGSA 2.80355E-05 5.20081E-05 14236.66667 30
GSA 2.87226E-05 5.04129E-05 39410 30
CGSA8 3.14604E-05 5.38765E-05 80011.66667 30
CGSA9 3.15725E-05 4.38475E-05 81398.33333 30
BBO 0.001719436 0.001264256 174325 7
DBBO 0.000508038 0.000459227 174518.3333 8

f16

FVGGSA 1.84578E-07 6.92086E-07 56578.33333 30
GSA 2.3E-07 6.42095E-07 146150 30
CGSA8 0.000466421 0.009345424 200000 0
CGSA9 0.00029439 0.010368093 200000 0
BBO 0.065272948 0.085459647 200000 0
DBBO 0.034748177 0.040469247 200000 0



Table 4 Continued:

TP Algorithm SD ME AFE SR

f17

FVGGSA 1.42435E-06 7.82029E-06 29450 30
GSA 1.45544E-06 7.75472E-06 86926.66667 30
CGSA8 0.000101188 0.000791677 200000 0
CGSA9 9.99422E-05 0.001020917 200000 0
BBO 0.044385826 0.071491278 200000 0
DBBO 2.83246E-05 1.36422E-05 83506.66667 27

f18

FVGGSA 1.34021E-06 7.89446E-06 29495 30
GSA 1.64223E-06 8.35732E-06 86808.33333 30
CGSA8 0.000103541 0.000735191 200000 0
CGSA9 7.16396E-05 0.000918579 200000 0
BBO 0.038002814 0.070375662 200000 0
DBBO 2.58167E-05 1.80428E-05 109188.3333 23

f19

FVGGSA 8.54501E-13 1.78991E-12 6838.333333 30
GSA 7.49569E-13 1.60954E-12 21175 30
CGSA8 8.18347E-13 1.79002E-12 30401.66667 30
CGSA9 7.16974E-13 1.71E-12 29901.66667 30
BBO 3.69823E-10 2.50834E-10 188806.6667 3
DBBO 1.13766E-11 5.91029E-12 90226.66667 22

f20

FVGGSA 9.6028E-06 9.18315E-06 18121.66667 30
GSA 1.07195E-05 1.23835E-05 48965 30
CGSA8 1.06159E-05 1.3273E-05 116328.3333 30
CGSA9 9.49062E-06 8.80391E-06 114850 30
BBO 0.000283252 0.000154304 171593.3333 10
DBBO 0.000147182 8.99139E-05 135356.6667 16

f21

FVGGSA 2.92902E-14 4.35207E-14 66075 30
GSA 0.017531045 0.033333333 161190 29
CGSA8 0.071910972 0.100106195 200000 0
CGSA9 0.247396831 0.133426362 200000 0
BBO 0.454861839 0.305210901 200000 0
DBBO 0.297851511 0.108000333 200000 0

f22

FVGGSA 5.39755E-06 4.82709E-06 14253.33333 30
GSA 5.55481E-06 4.60393E-06 42300 30
CGSA8 5.97998E-06 5.29309E-06 104328.3333 30
CGSA9 6.32497E-06 5.75214E-06 84918.33333 30
BBO 1.43222E-05 8.88844E-06 78816.66667 26
DBBO 0.632842387 0.127965301 78606.66667 29

f23

FVGGSA 7.05128E-06 8.71941E-05 14365 30
GSA 6.77996E-06 8.57392E-05 44783.33333 30
CGSA8 6.58545E-06 9.09028E-05 114931.6667 30
CGSA9 6.43314E-06 8.92693E-05 103860 30
BBO 2.61814E-05 0.000101775 137310 21
DBBO 0.0176558 0.003367038 97730 26

The Mann-Whitney U rank sum test [9] is a non-parametric test for comparison among the
data which are not normally distributed. In this study, this test is performed at 5% level of
significance (α = 0.05) with null hypothesis, ‘There is no significant difference in the data’, between
FVGGSA-GSA, FVGGSA-CGSA8, FVGGSA-CGSA9, FVGGSA-BBO and FVGGSA-DBBO. If
the significant difference between two data sets does not occur, it implies that the null hypothesis
is accepted, therefore sign ‘=’ appears. On the contrary, when the null hypothesis is rejected, ‘-’
or ‘+’ signs appears.

In this paper, the data sets are the AFEs of a particular algorithm. ‘-’ or ‘+’ sign shows that a
particular algorithm has more or less number of function evaluations as compared to other. Table
5 presents the results of Mann-Whitney U rank sum test for AFEs of 30 runs. In Table 5, 114 ‘+’
signs out of 115 comparisons assure that FVGGSA requires less number of function evaluations as
compared to the other considered algorithms.



Table 5: Comparison based on the AFEs of 30 runs for test bed 1 using Mann Whitney U rank
sum test at α = 0.05 significance level

Test Prob-
lem

U rank sum test
with FVGGSA

GSA CGSA8 CGSA9 BBO DBBO

f1 + + + + +
f2 + + + + +
f3 + + + + +
f4 + + + + +
f5 + + + + +
f6 + + + + +
f7 + + + + +
f8 + + + + +
f9 + + + + +
f10 + + + + +
f11 + + + + +
f12 + + + + +
f13 + + + + +
f14 = + + + +
f15 + + + + +
f16 + + + + +
f17 + + + + +
f18 + + + + +
f19 + + + + +
f20 + + + + +
f21 + + + + +
f22 + + + + +
f23 + + + + +

To further verify the exploitation of FVGGSA, the convergence behavior of the considered
algorithms over some unimodal and multimodal benchmark functions is illustrated in Fig. 6. It
can be observed in Fig. 6, FVGGSA outperforms others in terms of exploitation ability due to its
fastest convergence rate.

4.3.2 Test bed 2

To check the performance of the proposed algorithm over more complex problems, FVGGSA is
re-evaluated over the shifted and biased benchmark problems of test bed 2. Table 6 and Table 7
present the experimental results which are obtained by the average of 20 independent runs. Except
FVGGSA, other results are adopted from [10]. The criteria of comparison are mean and standard
deviation (SD) of the objective function values. The bold entries indicate the best results. As per
the results shown in Table 6 and Table 7, FVGGSA outperforms for 2 unimodal (F1 and F2) as
well as 3 multimodal (F6, F7 and F10) functions over other considered algorithms. For 3 functions
(F4, F9 and F11) FVGGSA is better than others except CGSA9. For F5, FVGGSA is better than
others except CGSA8 and CGSA9. While for F3, FVGGSA is better than GSA only. Furthermore,
to investigate the convergence speed of the proposed algorithm, FVGGSA is compared with GSA
and the best CGSA variant under considered unimodal (F1 and F2) and multimodal (F7 and F10)
benchmark functions. The convergence graphs are depicted in Fig. 7. It can be clearly observed
that FVGGSA has the fastest convergence rate as compared to GSA and the best variant of CGSA.

Based on the numerical results of FVGGSA on the problems of Test bed 1 and Test bed 2 it
is suggested that FVGGSA can be applied to solve the problems in continuous domain which are
non-separable and uni-modal or multi-modal.



(a) Benchmark function f1
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(b) Benchmark function f3
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(c) Benchmark function f7
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(d) Benchmark function f11
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(e) Benchmark function f14
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Figure 6: Convergence graph for benchmark functions f1, f3, f7, f11, f14 and f21



Table 6: Minimization results of test bed 2

TP Algorithm Mean SD TP Algorithm Mean SD

F1

GSA 9154.139 2816.071 GSA -12.8803 21.443822
CGSA1 -79.9991 0.00054 CGSA1 -79.8521 0.051772
CGSA2 -79.999 0.000801 CGSA2 -79.8545 0.0445217
CGSA3 2744.044 1557.386 CGSA3 -77.6142 6.736717
CGSA4 -79.9987 0.000518 CGSA4 -79.8401 0.040522
CGSA5 -79.9981 0.001215 F2 CGSA5 -79.7979 0.059315
CGSA6 -79.999 0.00064 CGSA6 -79.875 0.026707
CGSA7 -79.9985 0.001517 CGSA7 -79.8567 0.041229
CGSA8 -79.9996 0.000112 CGSA8 -79.8856 0.036908
CGSA9 -79.9995 0.000252 CGSA9 -79.8979 0.015186
CGSA10 -79.9986 0.001537 CGSA10 -79.8319 0.025325
FVGGSA -80 8.27402E-07 FVGGSA -79.9909 0.000834806

F3

GSA 8992532 1201459 GSA -20.2138 3.804462
CGSA1 116840.3 70535.26 CGSA1 -30.4488 2.30128
CGSA2 198815.5 72140.38 CGSA2 -29.7255 2.330251
CGSA3 3858229 1202078 CGSA3 -22.1425 3.010063
CGSA4 162491.1 78431.77 CGSA4 -32.0524 2.912228
CGSA5 116130.9 63272.89 F4 CGSA5 -29.1978 2.989176
CGSA6 121970.3 57720.59 CGSA6 -29.8382 3.101845
CGSA7 218939.4 115677.8 CGSA7 -29.7609 2.868508
CGSA8 40212.85 23173.42 CGSA8 -29.3983 2.015278
CGSA9 17322.05 9866.881 CGSA9 -35.4132 2.487503
CGSA10 143840 99020.52 CGSA10 -29.9936 2.515029
FVGGSA 6192650.299 1978710.505 FVGGSA -32.34019838 3.314337773

F5

GSA 36385.55 5403.108 GSA -5061.91 789.3759
CGSA1 1417.568 717.114 CGSA1 -5543.91 821.204
CGSA2 2942.762 1283.694 CGSA2 -5226.26 887.7445
CGSA3 25172.97 3233.377 CGSA3 -5170.38 673.8648
CGSA4 1996.549 1777.576 CGSA4 -5318.82 807.7437
CGSA5 1996.222 1330.493 F6 CGSA5 -5206.9 755.3401
CGSA6 1539.554 1224.341 CGSA6 -5213.43 848.2368
CGSA7 2761.892 1495.06 CGSA7 -5375.46 685.5158
CGSA8 158.2152 241.4738 CGSA8 -5724.74 888.7908
CGSA9 -79.9995 0.000347 CGSA9 -6489.32 849.6746
CGSA10 1478.906 789.3842 CGSA10 -5405.45 661.9886
FVGGSA 1158.959481 1082.271164 FVGGSA -6899.186412 932.0734707

F7

GSA -19.2075 16.01267 GSA -62.5807 1.69382
CGSA1 -8.85697 19.27564 CGSA1 -76.4301 7.098432
CGSA2 -2.92268 19.15199 CGSA2 -74.4996 8.191298
CGSA3 -35.0574 14.54588 CGSA3 -64.6326 4.353233
CGSA4 1.48412 19.66447 CGSA4 -73.0146 8.699273
CGSA5 -20.0007 8.708038 F8 CGSA5 -73.4597 7.760572
CGSA6 -5.91409 15.37048 CGSA6 -73.2779 7.991709
CGSA7 -15.9009 17.35564 CGSA7 -78.3286 3.922819
CGSA8 -3.01164 25.69204 CGSA8 -79.98 0.009413
CGSA9 20.76884 37.64664 CGSA9 -76.2319 6.765571
CGSA10 -2.05186 19.91167 CGSA10 -79.7545 0.694395
FVGGSA -39.6039594 9.482934705 FVGGSA -60.88875666 0.427750195

F9

GSA 895.6395 115.0452 GSA 869659.2 691767.8
CGSA1 809.924 69.23016 CGSA1 -50.3626 7.378042
CGSA2 831.9158 134.318 CGSA2 -35.6267 10.94971
CGSA3 910.7538 88.02444 CGSA3 475.8308 1401.28
CGSA4 820.3869 68.68291 CGSA4 -47.1339 6.533372
CGSA5 828.7685 80.04076 F10 CGSA5 -51.293 6.493393
CGSA6 812.7824 80.71501 CGSA6 -41.9416 8.575967
CGSA7 863.9838 68.1401 CGSA7 -48.5795 7.453836
CGSA8 801.8709 104.4999 CGSA8 -58.2807 9.238928
CGSA9 772.133 67.10897 CGSA9 -53.6841 4.819881
CGSA10 854.8892 93.37514 CGSA10 -48.4999 8.102045
FVGGSA 790.5301666 63.70447473 FVGGSA -73.17406 2.578542868



Table 7: Minimization results of test bed 2

TP Algorithm Mean SD

F11

GSA 14452359 17545762
CGSA1 -78.4668 2.147558
CGSA2 -78.2219 1.482622
CGSA3 31138.24 43257.47
CGSA4 -79.3375 0.808498
CGSA5 -79.2512 0.846976
CGSA6 -79.4858 0.709402
CGSA7 -74.0584 4.585205
CGSA8 -79.8951 0.284321
CGSA9 -79.9989 0.003469
CGSA10 -79.5537 0.838046
FVGGSA -79.9078 0.29254664

(a) Comparative behaviour for F1 (b) Comparative behaviour for F2

(c) Comparative behaviour for F7 (d) Comparative behaviour for F10

Figure 7: Convergence curves for shifted and biased benchmark functions

5 Conclusion

To avoid the possibility of stagnation in the search process, we first proposed a gravitational con-
stant having different scaling characteristics for different phases of the search space. Next, a novel
concept of fitness varying strategy is introduced in the above proposed gravitational constant.
This behavior controls acceleration of the agents in such a way that the chance of skipping the
global optima is reduced while maintaining the diversity. This self-accelerative behavior gives a
special intelligence to each agent for choosing the appropriate step size for its next move. Through
intensive experiments and analyses over 23 well-known benchmark functions and 11 shifted and
biased benchmark functions, the proposed algorithm has proved its efficiency for unimodal as well
as multimodal problems of continuous search space. Further, it is a good choice for non separable
continuous problems also.
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