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ZARISKI-LIKE SPACES OF CERTAIN MODULES

H. FAZAELI MOGHIMI∗ AND F. RASHEDI

Abstract. Let R be a commutative ring with identity and M
be a unitary R-module. The primary-like spectrum SpecL(M) is
the collection of all primary-like submodules Q such that M/Q is
a primeful R-module. Here, M is defined to be RSP if rad(Q)
is a prime submodule for all Q ∈ SpecL(M). This class contains
the family of multiplication modules properly. The purpose of this
paper is to introduce and investigates a new Zariski space of an
RSP module, called a Zariski-like space. In particular, we provide
conditions under which the Zariski-like space of a multiplication
module has a subtractive basis.

1. Introduction

This paper focuses on rings, which all are commutative with an
identity and modules are unitary. Let M be an R-module and N
be a submodule of M . The colon ideal of M into N is the ideal
(N : M) = {r ∈ R | rM ⊆ N} of R. A proper submodule P of
M is called p-prime if for p = (P : M), whenever rm ∈ P , r ∈ R and
m ∈ M , then m ∈ P or r ∈ p. The collection of all prime submodules
of M is denoted by Spec(M). If N is a submodule of M , then the
radical of N , denoted rad(N), is the intersection of all prime submod-
ules of M which contain N , unless no such primes exist, in which case
rad(N) = M .
A proper submodule Q of M is said to be primary-like if rm ∈ Q im-
plies r ∈ (Q : M) or m ∈ rad(Q) [5]. We state that a submodule N of
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an R-module M satisfies the primeful property if for each prime ideal
p of R with (N : M) ⊆ p, there exists a prime submodule P containing

N such that (P : M) = p. In this case
√

(N : M) = (rad(N) : M)
[10, Proposition 5.3]. For example the zero submodule of the Z-module
M =

∏
p∈Ω(

Z
pZ) is not a primary-like submodule of M , but it satisfies

the primeful property [7, Example 1.1(6)]. On the other hand although
M ′ = ⊕p∈Ω(

Z
pZ) is a primary-like submodule of M , it dose not satisfy

the primeful property [10, Example 1(5) and (6)]. In [5, Lemma 2.1] it
is shown that, if Q is a primary-like submodule satisfying the primeful
property, then p =

√
(Q : M) is a prime ideal of R and so in this case,

is Q called a p-primary-like submodule.
The primary-like spectrum SpecL(M) is defined to be the set of all
primary-like submodules of M satisfying the primeful property. For
example if M is the Z-module Q

⊕
Zp, where Q is the abelian group of

rational numbers and Zp is the cyclic group of order p, then Spec(M) =
{Q

⊕
0, 0

⊕
Zp} by [15, Example 2.6] and SpecL(M) = {Q

⊕
0} by [6,

Example 3.1]. In [6, Lemma 2.1], it is shown that if Spec(M) = ∅, then
SpecL(M) = ∅. However for the Z-module Q, we have Spec(Q) = {0}
and SpecL(Q) = ∅.
There are different module theoretic generalizations of the well-known
Zariski topology on the spectrum of a ring R having {V (I) | I is an
ideal of R} as the collection of closed sets, where V (I) = {p ∈ Spec(R) |
I ⊆ p} (see for example [1, 2, 3, 12]).
We set η∗(M) = {ν∗(N) | N is a submodule of M}, where ν∗(N) =
{Q ∈ SpecL(M) | N ⊆ rad(Q)}. This collection of varieties of sub-
modules is not closed under finite unions. An R-module M is called
top-like if η∗(M) satisfies the axioms of a Zariski-like topology T ∗ for
closed sets [6].
A module M over a ring R is called a multiplication module if each
submodule of M is of the form IM , where I is an ideal of R. In this
case, we can take I = (N : M) [4]. Multiplication modules are top-like
[7, Theorem 2.2]. Also if R is an Artinian ring, then Bezout R-modules
and distributive R-modules are top-like [6, Proposition 4.1].
From an algebraic point view, some Zariki spaces have been studied
related to these topologies [14, 16]. It is easily seen that η∗(M) with
the binary operation ν∗(N)+ν∗(N ′) = ν∗(N+N ′) = ν∗(N)∩ν∗(N ′) is
a semigroup with zero. Moreover η∗(R) with the similar addition and
multiplication as ν∗(I) ∗ ν∗(J) = ν∗(IJ) = ν∗(I ∩ J) is a semiring.
AnR-moduleM is called RSP if the radical of each element of SpecL(M)
is prime. In Section 2, we introduce a Zariski-like space over RSP
modules. In fact we show that for an RSP module M , the semigroup
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(η∗(M),+) with the scalar multiplication ν∗(I) ∗ ν∗(N) = ν∗(IN) is
an η∗(R)-semimodule (Theorem 2.4). In this case (SpecL(M), η∗(M))
also means an η∗(R)-space, called the Zariski-like space. In this section
we provide some background material and results regarding subtractive
subsemimodules of η∗(M).
The notion of Z∗-radical of a submodule N of M , defined in Section 3
and denoted by Z∗√

N , is the intersection of all elements of ν∗(N), unless

ν∗(N) = ∅, in which case Z∗√
N = M . It is proved that for submodules

N and N ′ of a multiplication module M , Z∗√
N ∩N ′ = Z∗√

N ∩ Z∗√
N ′.

Moreover, if | SpecL(M) |< ∞, then
Z∗√

Z∗√
N= Z∗√

N (Lemma 3.9).
Since these identities are frequently needed to examine the new notion
of a subtractive basis for a Zariski-like space, in a main part of Sec-
tion 3, we restrict ourselves on the class of multiplication modules as
a subclass of RSP modules. Such bases provide a means of generating
Zariski-like Spaces, which exploits both the algebraic and topological-
type properties of these spaces.
It is shown that if M is a Z∗-radical Noetherian multiplication R-
module with | SpecL(M) |< ∞ such that for every submodule N of M

and Q ∈ SpecL(M), N ⊆ Z∗√
N and rad(Q) ∩ N = rad(Q ∩ N), then

η∗(M) has a subtractive basis (Corollary 3.14).

2. The Zariski-like Space of RSP modules and
η∗(R)-homomorphisms

The saturation of a submodule N of an R-module M with respect
to a prime ideal p of R is the contraction of Np in M and designated
by Sp(N). It is known that Sp(N) = {m ∈ M | rm ∈ N for some
r ∈ R\p} [11]. Hereafter we will use X to represent SpecL(M). Hence

for any Q ∈ X , the ideal
√

(Q : M) = (rad(Q) : M) is prime and so is
rad(Q) ̸= M .

Lemma 2.1. Let M be an R-module and Q be a primary-like submod-
ule of M . Then Sp(Q) ⊆ rad(Q) for every p ∈ V (Q : M). In particu-
lar, if Sp(Q) is a prime submodule of M for some p ∈ V (Q : M), then
Sp(Q) = rad(Q).

Proof. Straightforward. □
Lemma 2.2. Let M be an R-module and Q be a submodule of M .
Consider the following statements.

(1) rad(Q) is a p-prime submodule of M .
(2) rad(Q) is a p-primary-like submodule of M .
(3) Q is a p-primary-like submodule of M
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Then (1) ⇔ (2). Furthermore, if Q ∈ X and (Q : M) is a radical ideal
of R, then (1)− (3) are equivalent.

Proof. (1) ⇔ (2) is clear since rad(rad(Q)) = rad(Q).
(1) ⇒ (3) Clear. (3) ⇒ (1) Since Sp(Q) ⊆ rad(Q), then Sp(Q) ̸= M .
Thus by [11, Proposition 2.4] and Lemma 2.1 rad(Q) is prime. The
verification of the other implications is straightforward. □

Recall that an R-module M is called RSP if the radical of each
element of X is prime. In the following we list some conditions under
which an R-module M is RSP.

Theorem 2.3. Let M be an R-module. Then M is RSP in each of the
following cases.

(1) R is a zero-dimensional ring.

(2) For each Q ∈ X and p =
√

(Q : M), (Sp(Q) : M) is a radical
ideal.

(3) For each Q ∈ X and p = (Q : M), Sp(Q) ̸= M .
(4) M is a multiplication module.
(5) R is a Noetherian domain and Q ∈ X is contained in only

finitely many prime submodules of M .

Proof. (1) Suppose Q ∈ X . Since
√

(Q : M) = (rad(Q) : M) is prime

and hence maximal,
√
(Q : M) = (P : M) for all prime submodules

P containing Q. Now if rm ∈ rad(Q) and m /∈ rad(Q), there is a
prime submodule P containing Q such that rm ∈ P and m /∈ P and
so r ∈ (P : M) =

√
(Q : M) = (rad(Q) : M). Thus rad(Q) is prime.

(2) p =
√

(Q : M) ⊆
√
(Sp(Q) : M) ⊆ (rad(Q) : M) =

√
(Q : M) =

p. It follows that
√
(Sp(Q) : M) = p. Now since (Sp(Q) : M) is a

radical ideal, we have (Sp(Q) : M) = p. It follows from [11, Theorem
2.3] and Lemma 2.1, rad(Q) is a prime submodule of M .
(3) Suppose Sp(Q) ̸= M . By [11, Proposition 2.4 ], Sp(Q) is a prime
submodule of M . It follows from Lemma 2.1 rad(Q) is a prime sub-
module of M .
(4) Since (rad(Q) : M) is a prime ideal of R for every Q ∈ X , rad(Q)
is a prime submodule of M by [4, Corollary 2.11].
(5) By Lemma 2.2 we may assume that (Q : M) ̸= 0. If P is a prime

submodule containing Q, then 0 ⊂
√

(Q : M) ⊆ (P : M) is a chain

of prime ideals of R. If
√

(Q : M) ⊆ (P : M) is a proper contain-
ment, then by [9, P.144] there are infinitely many prime ideals p with
(Q : M) ⊂ p ⊂ (P : M) and so we have infinitely prime submodules P

containing Q, a contradiction. Hence we have
√
(Q : M) = (P : M),

for all prime submodules P containing N . Now if rm ∈ rad(Q) and



ZARISKI-LIKE SPACES OF CERTAIN MODULES 105

m /∈ rad(Q), there is a prime submodule P containing Q such that

rm ∈ P and m /∈ P and so that r ∈ (P : M) =
√

(Q : M) = (rad(Q) :
M). □

For the remainder of this section, we assume that M and M ′ are
RSP R-modules.
Let (X,Ω) be a topological space, and let Γ be a collection of subsets
of a set Y such that Y ∈ Γ and Γ is closed with respect to finite
intersections. Further suppose that there exists a mapping ∗ : Ω∗Γ → Γ
such that (Γ,∩) is an Ω-semimodule. That is to say, for all τ, τ ′ ∈ Ω
and for all γ, γ′ ∈ Γ, the following properties hold.

(1) τ ∗ (γ ∩ γ′) = (τ ∗ γ) ∩ (τ ∗ γ′);
(2) (τ ∩ τ ′) ∗ γ = (τ ∗ γ) ∩ (τ ′ ∗ γ);
(3) (τ ∪ τ ′) ∗ γ = τ ∗ (τ ′ ∗ γ);
(4) ∅ ∗ γ = γ;
(5) τ ∗ Y = Y = X ∗ γ.

Then (Y,Γ) is called an Ω-space [14].

Theorem 2.4. Let M be an R-module and let the η∗(R)-action on
η∗(M) be given by ν∗(I) ∗ ν∗(N) = ν∗(IN), where I is an ideal of R
and N is a submodule of M . Then (X , η∗(M)) is an η∗(R)-space.

Proof. It is easy to see that (η∗(M),∩) is a commutative monoid with
identity X = ν∗(0). Now assume that ν∗(I) = ν∗(J) and ν∗(N) =
ν∗(N ′), where I, J are ideals of R and N,N ′ are submodules of M . We
must show that ν∗(IN) = ν∗(JN ′). Suppose Q ∈ ν∗(IN). Therefore
IN ⊆ rad(Q). Since rad(Q) is prime, N ⊆ rad(Q) or I ⊆ (rad(Q) :
M) by [15, Lemma 1.1]. Hence JN ′ ⊆ rad(Q) or JN ′ ⊆ (rad(Q) :
M)N ′ ⊆ rad(Q). By symmetry we have ν∗(IN) = ν∗(JN ′). Hence
the operation (∗) is well-defined. Now we check the condition (3) of
the above definition. ν∗(I) ∗ (ν∗(J) ∗ ν∗(N)) = ν∗(I) ∗ ν∗(JN) =
ν∗(I(JN)) = ν∗(IJ) ∗ ν∗(N) = (ν∗(I) ∪ ν∗(J)) ∗ ν∗(N). The other
properties follow similarly. □
The η∗(R)-space (X , η∗(M)) is called a Zariski-like space. As men-

tioned in the introduction, from another point view, (η∗(M),+) may
be considered as an semimodule over a semiring η∗(R) with addition
and multiplication defined as:

ν∗(N) + ν∗(N ′) = ν∗(N +N ′) = ν∗(N) ∩ ν∗(N ′),

ν∗(I) ∗ ν∗(N) = ν∗(IN) = ν∗(IM) ∪ ν∗(N).

Let R be a semiring. By a R-semimodule homomorphism, we mean a
map f : M → M′ of R-semimodules M and M′ which is R-linear.
Also subsemimodules and subspaces are defined naturally (For further
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reading about semirings, semimodules, and Zariski spaces, see for ex-
ample [8, 14, 13]).

Lemma 2.5. Let M , M ′ be R-modules and f : η∗(M) → η∗(M ′) be
an η∗(R)-homomorphism. If N , N ′ are submodules of M such that
ν∗(N) ⊆ ν∗(N ′), then f(ν∗(N)) ⊆ f(ν∗(N ′)).

Proof. Since ν∗(N) ⊆ ν∗(N ′), we have ν∗(N) = ν∗(N) ∩ ν∗(N ′) =
ν∗(N) + ν∗(N ′). Hence f(ν∗(N)) = f(ν∗(N) + ν∗(N ′)) = f(ν∗(N)) +
f(ν∗(N ′)) = f(ν∗(N)) ∩ f(ν∗(N ′)) ⊆ f(ν∗(N ′)). □
Lemma 2.6. Let M , M ′ be R-modules and f : η∗(M) → η∗(M ′) be an
η∗(R)-surjective homomorphism. Then f(ν∗(M)) = ν∗(M ′).

Proof. Since f is surjective, there exists a submodule N of M such that
f(ν∗(N)) = ν∗(M ′). Hence f(ν∗(M)) = f(ν∗(M + N)) = f(ν∗(M) +
ν∗(N)) = f(ν∗(M)) + f(ν∗(N)) = f(ν∗(M)) + ν∗(M ′) = ν∗(M ′). □
Lemma 2.7. Let M , M ′ be R-modules and f : η∗(M) → η∗(M ′) be
an η∗(R)-injective homomorphism. If N , N ′ are submodule of M such
that f(ν∗(N)) ⊆ f(ν∗(N ′)), then ν∗(N)) ⊆ ν∗(N ′).

Proof. Since f(ν∗(N)) ⊆ f(ν∗(N ′)), we have f(ν∗(N)) = f(ν∗(N)) ∩
f(ν∗(N ′)) = f(ν∗(N)∩ν∗(N ′)). Hence ν∗(N) = ν∗(N)∩ν∗(N ′) because
f is injective. Thus ν∗(N)) ⊆ ν∗(N ′). □

A subsemimodule ∆ is a subtractive subsemimodule of η∗(M) if
for submodules N , N ′ of M the conditions ν∗(N) ∈ ∆ and ν∗(N) +
ν∗(N ′) ∈ ∆ implies that ν∗(N ′) ∈ ∆. In this paper, we use Bourne
factor semimodule of a semimodule Γ over a semiring Ω (that is, the
elements of Γ

∆
are the equivalency classes [γ] (γ ∈ Γ) of the congruence

γ ∼ γ′⇔ ∃δ, δ′ ∈ ∆: γ + δ = γ′ + δ′. Also addition and scalar multipli-
cation is defined naturally; [γ] + [γ′] = [γ + γ′] and ω ∗ [γ] = [ω ∗ γ]).
Lemma 2.8. Let f : η∗(M) → η∗(M ′) be an η∗(R)-homomorphism.
Then Kerf is a subtractive subsemimodule of η∗(M). Conversely, if

∆ is a subtractive subsemimodule of η∗(M) , then π : η∗(M) → η∗(M)
∆

which is defined by π(ν∗(N)) = [ν∗(N)] is an η∗(R)-surjective homo-
morphism with Kerπ = [0].

Proof. It is clear that Kerf is a subtractive subsemimodule of η∗(M)
by [8]. Conversely, it is easy to see that π is a surjective homo-
morphism. Now we have π(ν∗(N) + ν∗(N ′)) = [ν∗(N) + ν∗(N ′)] =
[ν∗(N)] + [ν∗(N ′] = π(ν∗(N)) + π(ν∗(N ′)) and π(ν∗(I) ∗ ν∗(N)) =
[ν∗(I) ∗ ν∗(N)] = ν∗(I) ∗ [ν∗(N)] = ν∗(I) ∗ π(ν∗(N)). Thus π is an
η∗(R)-homomorphism. Also Kerπ = {ν∗(N) ∈ η∗(M) | [ν∗(N)] =
[0]} = {ν∗(N) ∈ η∗(M) | ν∗(N) ∈ [0]} = [0]. □
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Lemma 2.9. Let ∆ be a subspace of η∗(M). Then the following are
equivalent.

(1) ∆ is a subtractive subsemimodule of η∗(M);
(2) For submodules N , N ′ of M the conditions ν∗(N) ∈ ∆ and

ν∗(N) ⊆ ν∗(N ′) implies that ν∗(N ′) ∈ ∆.

Proof. (1)⇒(2) By Lemma 2.8, ∆ is the kernel of the η∗(R)-surjective

homomorphism π : η∗(M) → η∗(M)
∆

. Suppose N , N ′ are submodules
of M . Assume ν∗(N) ∈ ∆ and ν∗(N) ⊆ ν∗(N ′). Hence π(ν∗(N)) +
π(ν∗(N ′)) = ν∗(0). Thus π(ν∗(N ′)) = ν∗(0) and so ν∗(N ′) ∈ ∆.
(2)⇒(1) Assume N , N ′ are submodules of M . Suppose ν∗(N) ∈ ∆ and
ν∗(N)∩ν∗(N ′) ∈ ∆. Since ν∗(N)∩ν∗(N ′) ⊆ ν∗(N ′), then ν∗(N ′) ∈ ∆.
Thus ∆ is a subtractive subsemimodule of η∗(M). □
Proposition 2.10. Every proper subtractive subspace of η∗(M) is con-
tained in a maximal subtractive subspace.

Proof. Suppose ∆ is a proper subtractive subspace of η∗(M). Put
A = {Φ | ∆ ⊆ Φ}. Assume C = {Φi | i ∈ I} is a chain of elements of
A. It is easy to see that ∆ ∈ A and ∪i∈IΦi ∈ A. Thus the assertion
holds by Zorn’s lemma. □
Proposition 2.11. Let M , M ′ be R-modules and f : η∗(M) → η∗(M ′)
be an η∗(R)-homomorphism. If ∆ is a subtractive subspace of η∗(M ′),
then the following hold.

(1) f−1(∆) is a subtractive subspace of η∗(M) containing Kerf .

(2) f induces an η∗(R)-homomorphism ϕ : η∗(M)
f−1(∆)

→ η∗(M ′)
∆

having

kernel f−1(∆).

Proof. (1) Suppose N , N ′ are submodules of M . Assume ν∗(N) ∈
f−1(∆) and ν∗(N) ∩ ν∗(N ′) ∈ f−1(∆). Hence f(ν∗(N)) ∈ ∆ and
f(ν∗(N))∩f(ν∗(N ′)) ∈ ∆. Since ∆ is a subtractive subspace of η∗(M ′),
then f(ν∗(N ′)) ∈ ∆. Thus ν∗(N ′) ∈ f−1(∆) and so f−1(∆) is a sub-
tractive subspace of η∗(M). It is easy to see that Kerf ⊆ f−1(∆).
(2) Use [8, Corollary 13.48]. □

It is common that if {∆λ}λ∈Λ be a family of subtractive subspaces
of η∗(M), then ∩λ∈Λ∆λ is subtractive. Let Υ be a subset of η∗(M).
The subtractive closure of Υ, denoted γ(Υ), is the smallest subtractive
subspace of η∗(M) which contains Υ. It is clear that if Υ ⊆ Υ′ be
subsemimodules of η∗(M), then γ(Υ) ⊆ γ(Υ′).

Lemma 2.12. Let N be a submodule of an R-module M and ∆ be a
subsemimodule of η∗(M). Then the following hold.

(1) γ(∆) = {ν∗(N ′) | ν∗(N ′′) ⊆ ν∗(N ′) for some ν∗(N ′′) ∈ ∆}.
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(2) γ(η∗(R) ∗ ν∗(N)) = {ν∗(N ′) | ν∗(N) ⊆ ν∗(N ′)}.
Proof. (1) Suppose A = {ν∗(N ′) | ν∗(N ′′) ⊆ ν∗(N ′) for some ν∗(N ′′) ∈
∆} and ν∗(N ′) ∈ A. Therefore there exists ν∗(N ′′) ∈ ∆ such that
ν∗(N ′′) ⊆ ν∗(N ′). Since γ(∆) is the smallest subtractive subspace of
η∗(M) which contains ∆, then ν∗(N ′)∩ν∗(N ′′) = ν∗(N ′′) ∈ ∆ ⊆ γ(∆).
Thus ν∗(N ′) ∈ γ(∆) and so A ⊆ γ(∆). For the reverse inclusion we
show that A is a subtractive subspace of η∗(M) which contains ∆. It
is clear that ∆ ⊆ A. Now assume ν∗(N1), ν

∗(N2) ∈ A and ν∗(N ′′
1 ),

ν∗(N ′′
2 ) ∈ ∆ such that ν∗(N ′′

1 ) ⊆ ν∗(N1) and ν∗(N ′′
2 ) ⊆ ν∗(N2). Hence

ν∗(N ′′
1 ) ∩ ν∗(N ′′

2 ) ⊆ ν∗(N1) ∩ ν∗(N2). Thus ν∗(N1) ∩ ν∗(N2) ∈ A.
Suppose ν∗(I) ∈ η∗(R). So ν∗(I) ∗ ν∗(N ′′

1 ) ⊆ ν∗(I) ∗ ν∗(N1). Hence
ν∗(I) ∗ ν∗(N1) ∈ A. Thus A is a subspace of η∗(M). Now suppose
ν∗(N) ∈ η∗(M) and ν∗(N ′), ν∗(N) ∩ ν∗(N ′) ∈ A. Then there exists
ν∗(N ′′) ∈ ∆ such that ν∗(N ′′) ⊆ ν∗(N)∩ν∗(N ′). Thus ν∗(N ′′) ⊆ ν∗(N)
and so ν∗(N) ∈ A. Therefore A is a subtractive subspace of η∗(M) con-
taining ∆. Thus A = γ(∆).
(2) We have η∗(R) ∗ ν∗(N) = {ν∗(IN) | I is an ideal of R}. There-
fore η∗(R) ∗ ν∗(N) is a subspace of η∗(M). Hence γ(η∗(R)ν∗(N)) =
{ν∗(N ′) | ν∗(N ′′) ⊆ ν∗(N ′) for some ν∗(N ′′) ∈ η∗(R) ∗ ν∗(N)} =
{ν∗(N ′) | ν∗(IN) ⊆ ν∗(N ′) for some ideal I of R} ⊆ {ν∗(N ′) | ν∗(N) ⊆
ν∗(N ′)} by (1). By the similar argument we have {ν∗(N ′) | ν∗(N) ⊆
ν∗(N ′)} ⊆ γ(η∗(R) ∗ ν∗(N)). □
Proposition 2.13. Let N , N ′ be submodules of an R-module M and
ν∗(N ′) ∈ γ(ν∗(N)). Then ν∗(N) ⊆ ν∗(N ′).

Proof. It is clear by Lemma 2.12. □
Proposition 2.14. Let N , N ′ be submodules of an R-module M and
N ′ ⊆ rad(N). Then ν∗(N ′) ∈ γ(ν∗(N)).

Proof. SupposeN ′ ⊆ rad(N). Since ν∗(N) = ν∗(rad(N)), then ν∗(N) ⊆
ν∗(N ′). Thus ν∗(N ′) ∈ γ(ν∗(N)) by Lemma 2.12. □
Theorem 2.15. Let radical submodules of an R-module M satisfy
ACC. Then every subtractive subspace of η∗(M) is of the form γ(ν∗(N))
for some submodule N of M .

Proof. Suppose ∆ is a subtractive subspace of η∗(M). If ν∗(M) ∈ ∆,
then ∆ = η∗(M) = γ(ν∗(M)). So assume that ν∗(M) /∈ ∆. Let A be
the collection of all radical submodules N of M such that ν∗(N) ∈ ∆,
and note that A ̸= ∅ since ν∗(N) = ν∗(rad(N)) for every submodule
N of M . Now choose N ′ to be a maximal element of A. To see that
∆ = γ(ν∗(N ′)), let ν∗(N ′′) ∈ ∆, where N ′′ is a submodule of M . If
S = rad(N ′ +N ′′), then ν∗(S) = ν∗(N ′ +N ′′) = ν∗(N ′)∩ ν∗(N ′′) ∈ ∆.
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Since S is a radical submodule of M , then N ′′ ⊆ S = N ′ = rad(N ′).
Hence ν∗(N ′′) ∈ γ(ν∗(N ′)) by Lemma 2.12. Thus ∆ ⊆ γ(ν∗(N ′)).
Since ν∗(N ′) ∈ ∆, then γ(ν∗(N ′)) ⊆ ∆. Thus ∆ = γ(ν∗(N ′)). □

Lemma 2.16. Let M be an R-module and {Ni}i∈I be submodules of
M . Then ν∗(

∑
i∈I Ni) =

∑
i∈I ν

∗(Ni).

Proof. For Q ∈ X we have Q ∈
∑

i∈I ν
∗(Ni) if and only if Q ∈ ν∗(Ni)

for every i ∈ I iff Ni ⊆ rad(Q) for each i ∈ I iff
∑

i∈I Ni ⊆ rad(Q) iff
Q ∈ ν∗(

∑
i∈I Ni). □

Theorem 2.17. Let M be an R-module and {Ni}ni=1 be submodules of
M . Then γ(

∑n
i=1 η

∗(R) ∗ ν∗(Ni)) = γ(ν∗(
∑n

i=1Ni)).

Proof. Assume ν∗(N ′) ∈ γ(
∑n

i=1 η
∗(R) ∗ ν∗(Ni)). Hence by Lemma

2.12, ν∗(
∑n

i=1 JiNi) ⊆ ν∗(N ′) for some ideal Ji ofR. Since ν∗(
∑n

i=1Ni) ⊆
ν∗(

∑n
i=1 JiNi), then ν∗(

∑n
i=1Ni) ⊆ ν∗(N ′). So ν∗(N ′) ∈ γ(ν∗(

∑n
i=1Ni)).

Thus γ(
∑n

i=1 η
∗(R) ∗ ν∗(Ni)) ⊆ γ(ν∗(

∑n
i=1Ni)). Now, we let ν∗(N ′) ∈

γ(ν∗(
∑n

i=1Ni)). Then ν∗(
∑n

i=1 Ni) ⊆ ν∗(N ′). By Lemma 2.16 we have
ν∗(

∑n
i=1Ni) =

∑n
i=1 ν

∗(Ni) ∈
∑n

i=1 η
∗(R) ∗ ν∗(Ni). Hence ν∗(N ′) ∈

γ(
∑n

i=1 η
∗(R)∗ν∗(Ni)). Thus γ(ν

∗(
∑n

i=1Ni)) ⊆ γ(i = 1nη∗(R)∗ν∗(Ni)).
□

3. Subtractive Closure and Subtractive Bases

We define the Z∗-radical of a submodule N of M , denoted by Z∗√
N ,

to be the intersection of all members of ν∗(N). A submodule N of

M is a Z∗-radical submodule if Z∗√
N = N . An R-module M is called

Z∗-radical if Z∗√
0M = 0. Let Y be a subset of X . The closure of

Y in X , denoted by Y , is the intersection of all closed subset of X
containing Y . Also ξ(Y) is the intersection of all elements in Y (note
that if Y = ∅, then ξ(Y) = M). It is easy to verify that, if Y1,Y2 ⊆ X ,
then ξ(Y1 ∪ Y2) = ξ(Y1) ∩ ξ(Y2).

Lemma 3.1. Let M be an R-module and N , N ′ be submodules of
M . If ν∗(N) ⊆ ν∗(N ′), then Z∗√

N ′ ⊆ Z∗√
N . The converse is true if

N ′ ⊆ Z∗√
N ′.

Proof. Suppose ν∗(N) ⊆ ν∗(N ′). Hence ξ(ν∗(N ′)) ⊆ ξ(ν∗(N)) and

so Z∗√
N ′ ⊆ Z∗√

N . Conversely, Suppose Q ∈ ν∗(N). Hence Z∗√
N ′ ⊆

Z∗√
N ⊆ Q. Thus N ′ ⊆ rad(Q) and so ν∗(N) ⊆ ν∗(N ′). □

Lemma 3.2. Let M be a finitely generated R-module. Then Z∗√
N ̸= M

if and only if ν∗(N) ̸= ∅ if and only if N ̸= M .
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Proof. Suppose Z∗√
N ̸= M . Hence N ̸= M . Now assume N ̸= M .

Then (N : M) ̸= R and so (N : M) ⊆ p for some prime ideal p of
R. Since M is finitely generated, M is primeful by [10, Theorem 2.2].
So there exists Q ∈ Spec(M) ⊆ X such that N ⊆ rad(Q). Hence
Q ∈ ν∗(N). Thus ν∗(N) ̸= ∅. If ν∗(N) ̸= ∅ and Q ∈ ν∗(N). Hence

N ⊆ rad(Q). Thus Z∗√
N ⊆ Q ̸= M . □

Lemma 3.3. Let M be an R-module. If Q ∈ X and N is a submodule
of M such that rad(Q)∩N = rad(Q∩N), then N ⊆ Q or Q∩N is a
primary-like submodule of N .

Proof. Suppose N ⊈ Q, n ∈ N and rn ∈ Q∩N such that r /∈ (Q∩N :
N). Then rn ∈ Q and r /∈ (Q : M). Since Q is primary-like, we have
n ∈ rad(Q). Thus n ∈ rad(Q ∩N). □
Lemma 3.4. Let M be a Z∗-radical R-module such that every submod-
ule N of M is finitely generated and N ⊆ Z∗√

N . If for every Q ∈ X ,
rad(Q) ∩ N = rad(Q ∩ N), then every direct summand of M is a
Z∗-radical submodule of M .

Proof. Suppose that N is a direct summand of M and N ⊂ Z∗√
N .

Hence M = N
⊕

N ′ for some submodule N ′ of M . Therefore there ex-

ists m = (n, n′) ∈ Z∗√
N\N . So 0 ̸= (0, n′) ∈ Z∗√

N . Since M/N ∼= N ′,
there is a one-to-one correspondence between the primary-like submod-
ules of N ′ which satisfy the primeful property and the primary-like sub-
modules ofM/N satisfying the primeful property. Since (0, n′) ∈ Z∗√

N ,
(0, n′) belongs to every primary-like submodule of the module N ′ which
satisfies the primeful property. Let Q ∈ X . Then we show that (0, n′) ∈
Q. If N ′ ⊆ Q, then (0, n′) ∈ Q because (0, n′) ∈ N ′. Suppose N ′ ⊈ Q.
Hence by Lemma 3.3 and [10, Theorem 2.2], Q∩N ′ ∈ SpecL(N

′). Thus
(0, n′) ∈ Q ∩N ′ ⊆ Q and so n′ ∈ Z∗√

0M = 0, a contradiction. □
Let M be an R-module and {Ni}ni=1 be submodules of M . If ∆ =

{ν∗(N1), · · · , ν∗(Nn)} we recall the following definitions.

(1) ∆ is a subtractive generating set of η∗(M) if
η∗(M) = γ(

∑
i∈I η

∗(R) ∗ ν∗(Ni)).
(2) ∆ is a subtractive linearly independent set of η∗(M) if ν∗(0) /∈ ∆

and γ(ν∗(Ni)) ∩ γ(
∑

j ̸=i η
∗(R) ∗ ν∗(Nj)) = {ν∗(0)} for each i,

(1 ≤ i ≤ n).
(3) ∆ is a subtractive linearly independent generating set of η∗(M)

if ∆ satisfies both conditions (1) and (2).

Lemma 3.5. Let M be an R-module and {Ni}ni=1 be submodules of M .
If ∆ = {ν∗(N1), · · · , ν∗(Nn)}, then the following hold.
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(1) ∆ is a subtractive generating set of η∗(M) iff Z∗√∑n
i=1Ni = M .

(2) If M is a finitely generated, then ∆ is a subtractive generating
set of η∗(M) iff

∑n
i=1Ni = M .

Proof. (1) By Theorem 2.17, γ(
∑n

i=1 η
∗(R)∗ν∗(Ni)) = γ(ν∗(

∑n
i=1Ni)).

So ∆ is a subtractive generating set of η∗(M) if and only if η∗(M) =
γ(
∑n

i=1 η
∗(R)∗ν∗(Ni)) = γ(ν∗(

∑n
i=1Ni)) iff ν∗(

∑n
i=1 Ni) ⊆ ν∗(M) = ∅

iff ν∗(
∑n

i=1Ni) = ∅ = ν∗(M) iff Z∗√∑n
i=1 Ni = M .

(2) By (1) ∆ is a subtractive generating set of η∗(M) iff Z∗√∑n
i=1Ni =

M . Since M is finitely generated, by Lemma 3.2 ∆ is a subtractive
generating set of η∗(M) iff

∑n
i=1Ni = M . □

Theorem 3.6. Let M , M ′ be R-modules and f : η∗(M) → η∗(M ′) be
an η∗(R)-isomorphism. If ∆ = {ν∗(N1), · · · , ν∗(Nn)} is a subtractive
linearly independent set of η∗(M), then {f(ν∗(N1)), · · · , f(ν∗(Nn))} is
a subtractive linearly independent set of η∗(M ′).

Proof. Since f is an isomorphism, f(ν∗(0)) = ν∗(0). Hence ν∗(0) /∈
{f(ν∗(N1)), · · · , f(ν∗(Nn))} because ν∗(0) /∈ ∆. Now, suppose that
there exists 1 ≤ i ≤ n such that

ν∗(N ′) ∈ γ(f(ν∗(Ni))) ∩ γ(
∑

j ̸=i η
∗(R)ν∗(Nj)).

Since f is surjective, ν∗(N ′) = f(ν∗(N)) for some submodule N of
M . Hence f(ν∗(Ni)) ⊆ f(ν∗(N)) and f(ν∗(

∑
j ̸=i IjNj)) ⊆ f(ν∗(N)).

By Lemma 2.7, ν∗(Ni) ⊆ ν∗(N) and
∑

j ̸=i ν
∗(IjNj) ⊆ ν∗(N). Thus

ν∗(N) ∈ γ(ν∗(Ni))∩γ(
∑

j ̸=i η
∗(R)∗ν∗(Nj)). This implies that ν∗(N) =

ν∗(0). Therefore f(ν∗(N)) = ν∗(0) and so ν∗(N ′) = ν∗(0). Thus
{f(ν∗(N1)), · · · , f(ν∗(Nn))} is a subtractive linearly independent set
of η∗(M ′). □

For the remainder of this section, we assume that all modules are mul-
tiplication. So that ν∗(N) = {Q ∈ X |

√
(N : M) ⊆

√
(Q : M)} for

every submodule N of an R-module M .

Lemma 3.7. Let M be an R-module and Y ⊆ X . If | X |< ∞, then
ν∗(ξ(Y)) = Y. In particular, Y is closed if and only if ν∗(ξ(Y)) = Y.

Proof. Suppose Q ∈ Y . Hence ξ(Y) ⊆ Q. Therefore
√
(Q : M) ⊇√

(ξ(Y) : M). Since M is multiplication, Q ∈ ν∗(ξ(Y)) and so Y ⊆
ν∗(ξ(Y)). Next, let ν∗(N) be any closed subset of X containing Y .

Then
√

(Q : M) ⊇
√
(N : M) for every Q ∈ Y so that

√
(ξ(Y) : M) ⊇√

(N : M) since | X |< ∞. Hence, for every Q′ ∈ ν∗(ξ(Y)) we have√
(Q′ : M) ⊇

√
(ξ(Y) : M) ⊇

√
(N : M). Then ν∗(ξ(Y)) ⊆ ν∗(N).
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Thus ν∗(ξ(Y)) is the smallest closed subset of X containing Y , hence
ν∗(ξ(Y)) = Y . □

Lemma 3.8. Let M be an R-module and N be a submodule of M . If
| X |< ∞, then ν∗(ξ(ν∗(N))) = ν∗( Z∗√

N) = ν∗(N).

Proof. It is clear by Lemma 3.7. □

Lemma 3.9. Let M be an R-module and N , N ′ be submodules of M .
Then the following hold.

(1) ν∗(N) ∪ ν∗(N ′) = ν∗(N ∩N ′).

(2) If | X |< ∞, then
Z∗√

Z∗√
N= Z∗√

N .

(3) Z∗√
N ∩N ′ = Z∗√

N ∩ Z∗√
N ′.

Proof. (1) Since M is multiplication, we have ν∗(N) = {Q ∈ X |√
(N : M) ⊆

√
(Q : M)} for a submodule N of M . Hence the asser-

tion follows from the fact that (Q : M) is a primary ideal for Q ∈ X .

(2) ν∗( Z∗√
N) = ν∗(N), by Lemma 3.8. Therefore ξ(ν∗( Z∗√

N)) =

ξ(ν∗(N)). Thus
Z∗√

Z∗√
N = Z∗√

N .

(3) Z∗√
N ∩N ′ = ξ(ν∗(N ∩ N ′)) = ξ(ν∗(N) ∪ ν∗(N ′)) = ξ(ν∗(N)) ∩

ξ(ν∗(N ′)) = Z∗√
N ∩ Z∗√

N ′, by (1). □

Lemma 3.10. Let M be an R-module such that | X |< ∞ and for

every submodule K of M , K ⊆ Z∗√
K. If N , N ′ are submodules of M ,

then γ(ν∗(N)) ∩ γ(ν∗(N ′)) = γ(ν∗( Z∗√
N ∩ Z∗√

N ′)).

Proof. Suppose ν∗(N ′′) ∈ γ(ν∗(N))∩γ(ν∗(N ′)). So ν∗(N ′′) ∈ γ(ν∗(N))
and ν∗(N ′′) ∈ γ(ν∗(N ′)). Hence ν∗(N) ⊆ ν∗(N ′′) and ν∗(N ′) ⊆
ν∗(N ′′). By Lemma 3.1, Z∗√

N ′′ ⊆ Z∗√
N and Z∗√

N ′′ ⊆ Z∗√
N ′. There-

fore Z∗√
N ′′ ⊆ Z∗√

N ∩ Z∗√
N ′. So ν∗( Z∗√

N ∩ Z∗√
N ′) ⊆ ν∗( Z∗√

N ′′).

Thus ν∗(N ′′) ∈ γ(ν∗( Z∗√
N ∩ Z∗√

N ′)). For the reverse inclusion, let

ν∗(N ′′) ∈ γ(ν∗( Z∗√
N ∩ Z∗√

N ′)). Then ν∗( Z∗√
N ∩ Z∗√

N ′) ⊆ ν∗(N ′′).

Hence by Lemma 3.1 and Lemma 3.9 Z∗√
N ′′ ⊆ Z∗√

Z∗√
N ∩ Z∗√

N ′ =
Z∗√

Z∗√
N ∩ Z∗√

Z∗√
N ′ = Z∗√

N ∩ Z∗√
N ′. Thus Z∗√

N ′′ ⊆ Z∗√
N and

Z∗√
N ′′ ⊆ Z∗√

N ′. By Lemma 3.1, ν∗(N) ⊆ ν∗(N ′′) and ν∗(N ′) ⊆
ν∗(N ′′). Thus ν∗(N ′′) ∈ γ(ν∗(N)) ∩ γ(ν∗(N ′)) □

Lemma 3.11. Let M be an R-module such that | X |< ∞ and for

every submodule N of M , N ⊆ Z∗√
N . If ∆ = {ν∗(N1), · · · , ν∗(Nn)},

then ∆ is a subtractive linearly independent set of η∗(M) if and only if

ν∗(0) /∈ ∆ and Z∗√
Ni ∩ Z∗

√∑
j ̸=iNj =

Z∗√
0, for each i, (1 ≤ i ≤ n).
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Proof. Suppose ∆ = {ν∗(N1), · · · , ν∗(Nn)}. Therefore γ(
∑n

i=1 η
∗(R) ∗

ν∗(Ni)) = γ(ν∗(
∑n

i=1Ni)) by Theorem 2.17. Thus ∆ is a subtrac-
tive linearly independent set of η∗(M) if and only if ν∗(0) /∈ ∆ and
γ(ν∗(Ni)) ∩ γ(ν∗(

∑
j ̸=iNj)) = {ν∗(0)} for each i, (1 ≤ i ≤ n). There-

fore γ(ν∗( Z∗√
Ni ∩ Z∗

√∑
j ̸=iNj)) = {ν∗(0)} for each i, (1 ≤ i ≤ n) by

Lemma 3.10, so ν∗( Z∗√
Ni∩ Z∗

√∑
j ̸=iNj) = ν∗(0) for each i, (1 ≤ i ≤ n).

Thus by Lemma 3.1 and Lemma 3.9 we have Z∗√
Ni∩ Z∗

√∑
j ̸=iNj =

Z∗√
0

for each i, (1 ≤ i ≤ n). □

Lemma 3.12. Let M be a Z∗-radical R-module such that | X |< ∞ and

for every submodule N of M , N ⊆ Z∗√
N . If ∆ = {ν∗(N1), · · · , ν∗(Nn)}

is a subtractive linearly independent set of η∗(M), then
∑n

i=1Ni is di-
rect.

Proof. By Lemma 3.11, Z∗√
Ni ∩ Z∗

√∑
j ̸=iNj = Z∗√

0 = 0 for each i,

(1 ≤ i ≤ n). By assumption Ni ∩
∑

j ̸=iNj = 0. Thus
∑n

i=1Ni is
direct. □

Theorem 3.13. Let M be a Noetherian Z∗-radical R-module such that
for every submodule N of M and Q ∈ X , N ⊆ Z∗√

N and rad(Q)∩N =
rad(Q ∩ N). If | X |< ∞, then ∆ = {ν∗(N1), · · · , ν∗(Nn) | Ni ̸= 0}
is a subtractive linearly independent set of η∗(M) if and only if M =⊕n

i=1Ni.

Proof. Suppose ∆ = {ν∗(N1), · · · , ν∗(Nn)} is a subtractive linearly in-
dependent set of η∗(M). Hence by Lemma 3.5(2), M =

∑n
i=1Ni. Thus

by Lemma 3.12, M =
⊕n

i=1Ni. Conversely, assume M =
⊕n

i=1Ni.
Hence by Lemma 3.5(2), ∆ is a subtractive generating set of η∗(M).
Moreover, for every i, (1 ≤ i ≤ n) we have Z∗√

0 = 0 = Ni ∩
∑

j ̸=iNj =

Z∗√
Ni ∩ Z∗

√∑
j ̸=iNj by Lemma 3.4. Since Ni ̸= 0 for every i, (1 ≤ i ≤

n) we have ν∗(0) /∈ ∆. Thus ∆ is a subtractive linearly independent
set of η∗(M) by Lemma 3.11. □

Let ∆ = {ν∗(N1), · · · , ν∗(Nn)} be a subtractive linearly independent
set of η∗(M). Assume that for some j, (1 ≤ j ≤ n) there exist submod-
ules N ′

j1
and N ′

j2
of M such that Γ = {ν∗(N1), · · · , ν∗(Nj−1), ν

∗(N ′
j1
),

ν∗(N ′
j2
), ν∗(Nj+1), ν

∗(Nn)} is likewise a subtractive linearly indepen-
dent set of η∗(M). Then Γ is said to be a simple refinement of ∆. A
subtractive linearly independent set ∆ of η∗(M) is said to be a sub-
tractive basis if there does not exist a simple refinement of ∆.
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Corollary 3.14. Let M be a Noetherian Z∗-radical R-module such that
for every submodule N of M and Q ∈ X , N ⊆ Z∗√

N and rad(Q)∩N =
rad(Q ∩N). If | X |< ∞, then η∗(M) has a subtractive basis.

Proof. Since M is Noetherian, it has a finite indecomposable direct
sum decomposition such as M =

⊕n
i=1Ni. Thus by Theorem 3.13

{ν∗(Ni)}ni=1 is a subtractive basis for M . □
Corollary 3.15. Let M be a Noetherian Z∗-radical R-module such that
| X |< ∞ and for every submodule N of M and Q ∈ X , N ⊆ Z∗√

N
and rad(Q) ∩ N = rad(Q ∩ N). If N ′ is a direct summand of M and

N ′′ is a submodule of M such that Z∗√
N ′′ = N ′, then N ′′ = N ′.

Proof. By Lemma 3.4, Z∗√
N ′ = N ′. Hence Z∗√

N ′′ = N ′ = Z∗√
N ′.

So by Lemma 3.1, ν∗(N ′) = ν∗(N ′′). Hence by Theorem 3.13 N ′′ is

a direct summand of M . Then by Lemma 3.4, Z∗√
N ′′ = N ′′. Thus

N ′′ = N ′. □
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