1,042 research outputs found

    Inelastic cotunneling in quantum dots and molecules with weakly broken degeneracies

    Get PDF
    We calculate the nonlinear cotunneling conductance through interacting quantum dot systems in the deep Coulomb blockade regime using a rate equation approach based on the T-matrix formalism, which shows in the concerned regions very good agreement with a generalized master equation approach. Our focus is on inelastic cotunneling in systems with weakly broken degeneracies, such as complex quantum dots or molecules. We find for these systems a characteristic gate dependence of the non-equilibrium cotunneling conductance. While on one side of a Coulomb diamond the conductance decreases after the inelastic cotunneling threshold towards its saturation value, on the other side it increases monotonously even after the threshold. We show that this behavior originates from an asymmetric gate voltage dependence of the effective cotunneling amplitudes.Comment: 12 pages, 12 figures; revised published versio

    The importance of initial-final state correlations for the formation of fragments in heavy ion collisions

    Get PDF
    Using quantum molecular dynamics simulations, we investigate the formation of fragments in symmetric reactions between beam energies of E=30AMeV and 600AMeV. After a comparison with existing data we investigate some observables relevant to tackle equilibration: dsigma/dErat, the double differential cross section dsigma/pt.dpz.dpt,... Apart maybe from very energetic E>400AMeV and very central reactions, none of our simulations gives evidence that the system passes through a state of equilibrium. Later, we address the production mechanisms and find that, whatever the energy, nucleons finally entrained in a fragment exhibit strong initial-final state correlations, in coordinate as well as in momentum space. At high energy those correlations resemble the ones obtained in the participant-spectator model. At low energy the correlations are equally strong, but more complicated; they are a consequence of the Pauli blocking of the nucleon-nucleon collisions, the geometry, and the excitation energy. Studying a second set of time-dependent variables (radii, densities,...), we investigate in details how those correlations survive the reaction especially in central reactions where the nucleons have to pass through the whole system. It appears that some fragments are made of nucleons which were initially correlated, whereas others are formed by nucleons scattered during the reaction into the vicinity of a group of previously correlated nucleons.Comment: 45 pages text + 20 postscript figures Accepted for publication in Physical Review

    Zebrafish cerebrospinal fluid mediates cell survival through a retinoid signaling pathway

    Get PDF
    Cerebrospinal fluid (CSF) includes conserved factors whose function is largely unexplored. To assess the role of CSF during embryonic development, CSF was repeatedly drained from embryonic zebrafish brain ventricles soon after their inflation. Removal of CSF increased cell death in the diencephalon, indicating a survival function. Factors within the CSF are required for neuroepithelial cell survival as injected mouse CSF but not artificial CSF could prevent cell death after CSF depletion. Mass spectrometry analysis of the CSF identified retinol binding protein 4 (Rbp4), which transports retinol, the precursor to retinoic acid (RA). Consistent with a role for Rbp4 in cell survival, inhibition of Rbp4 or RA synthesis increased neuroepithelial cell death. Conversely, ventricle injection of exogenous human RBP4 plus retinol, or RA alone prevented cell death after CSF depletion. Zebrafish rbp4 is highly expressed in the yolk syncytial layer, suggesting Rbp4 protein and retinol/RA precursors can be transported into the CSF from the yolk. In accord with this suggestion, injection of human RBP4 protein into the yolk prevents neuroepithelial cell death in rbp4 loss-of-function embryos. Together, these data support the model that Rbp4 and RA precursors are present within the CSF and used for synthesis of RA, which promotes embryonic neuroepithelial survival

    Condensation of MgS in outflows from carbon stars

    Full text link
    The basic mechanism responsible for the widespread condensation of MgS in the outflows from carbon rich stars on the tip of the AGB is discussed with the aim of developing a condensation model that can be applied in model calculations of dust formation in stellar winds. The different possibilities how MgS may be formed in the chemical environment of outflows from carbon stars are explored by some thermochemical calculations and by a detailed analysis of the growth kinetics of grains in stellar winds. The optical properties of core-mantle grains with a MgS mantle are calculated to demonstrate that such grains reproduce the structure of the observed 30 μ\mum feature. These considerations are complemented by model calculations of circumstellar dust shells around carbon stars. It is argued that MgS is formed via precipitation on silicon carbide grains. This formation mechanism explains some of the basic observed features of MgS condensation in dust shells around carbon stars. A weak secondary peak at about 33 ... 36 μ\mum is shown to exist in certain cases if MgS forms a coating on SiC.Comment: 9 pages, 7 figure

    The effects of disk and dust structure on observed polarimetric images of protoplanetary disks

    Full text link
    Imaging polarimetry is a powerful tool for imaging faint circumstellar material. For a correct analysis of observations we need to fully understand the effects of dust particle parameters, as well as the effects of the telescope, atmospheric seeing, and assumptions about the data reduction and processing of the observed signal. Here we study the major effects of dust particle structure, size-dependent grain settling, and instrumental properties. We performed radiative transfer modeling using different dust particle models and disk structures. To study the influence of seeing and telescope diffraction we ran the models through an instrument simulator for the ExPo dual-beam imaging polarimeter mounted at the 4.2m William Herschel Telescope (WHT). Particle shape and size have a strong influence on the brightness and detectability of the disks. In the simulated observations, the central resolution element also contains contributions from the inner regions of the protoplanetary disk besides the unpolarized central star. This causes the central resolution element to be polarized, making simple corrections for instrumental polarization difficult. This effect strongly depends on the spatial resolution, so adaptive optics systems are needed for proper polarization calibration. We find that the commonly employed homogeneous sphere model gives results that differ significantly from more realistic models. For a proper analysis of the wealth of data available now or in the near future, one must properly take the effects of particle types and disk structure into account. The observed signal depends strongly on the properties of these more realistic models, thus providing a potentially powerful diagnostic. We conclude that it is important to correctly understand telescope depolarization and calibration effects for a correct interpretation of the degree of polarization.Comment: Accepted for publication in A&

    W Hya : molecular inventory by ISO-SWS

    Get PDF
    Infrared spectroscopy is a powerful tool to probe the inventory of solid state and molecular species in circumstellar ejecta. Here we analyse the infrared spectrum of the Asymptotic Giant Branch star W Hya, obtained by the Short and Long Wavelength Spectrometers on board of the Infrared Satellite Observatory. These spectra show evidence for the presence of amorphous silicates, aluminum oxide, and magnesium-iron oxide grains. We have modelled the spectral energy distribution using laboratory measured optical properties of these compounds and derive a total dust mass loss rate of 3E-10 Msol/yr. We find no satisfactory fit to the 13 micron dust emission feature and the identification of its carrier is still an open issue. We have also modelled the molecular absorption bands due to H2O, OH, CO, CO2, SiO, and SO2 and estimated the excitation temperatures for different bands which range from 300 to 3000K. It is clear that different molecules giving rise to these absorption bands originate from different gas layers. We present and analyse high resolution Fabry-Perot spectra of the three CO2 bands in the 15 micron region. In these data, the bands are resolved into individual Q-lines in emission, which allows the direct determination of the excitation temperature and column density of the emitting gas. This reveals the presence of a warm (about 450K) extended layer of CO2, somewhere between the photosphere and the dust formation zone. The gas in this layer is cooler than the 1000K CO2 gas responsible for the low-resolution absorption bands at 4.25 and 15 micron. The rotational and vibrational excitation temperatures derived from the individual Q-branch lines of CO2 are different (450K and 150K, respectively) so that the CO2 level population is not in LTE.Comment: To appear in Astronomy and Astrophysics A reference is adde

    Cosmic-ray strangelets in the Earth's atmosphere

    Full text link
    If strange quark matter is stable in small lumps, we expect to find such lumps, called ``strangelets'', on Earth due to a steady flux in cosmic rays. Following recent astrophysical models, we predict the strangelet flux at the top of the atmosphere, and trace the strangelets' behavior in atmospheric chemistry and circulation. We show that several strangelet species may have large abundances in the atmosphere; that they should respond favorably to laboratory-scale preconcentration techniques; and that they present promising targets for mass spectroscopy experiments.Comment: 28 pages, 4 figures, revtex

    The Spitzer Spectroscopic Survey of S-type Stars

    Get PDF
    S-type AGB stars are thought to be in the transitional phase between M-type and C-type AGB stars. Because of their peculiar chemical composition, one may expect a strong influence of the stellar C/O ratio on the molecular chemistry and the mineralogy of the circumstellar dust. In this paper, we present a large sample of 87 intrinsic galactic S-type AGB stars, observed at infrared wavelengths with the Spitzer Space Telescope, and supplemented with ground-based optical data. On the one hand, we derive the stellar parameters from the optical spectroscopy and photometry, using a grid of model atmospheres. On the other, we decompose the infrared spectra to quantify the flux-contributions from the different dust species. Finally, we compare the independently determined stellar parameters and dust properties. For the stars without significant dust emission, we detect a strict relation between the presence of SiS absorption in the Spitzer spectra and the C/O ratio of the stellar atmosphere. These absorption bands can thus be used as an additional diagnostic for the C/O ratio. For stars with significant dust emission, we define three groups, based on the relative contribution of certain dust species to the infrared flux. We find a strong link between group-membership and C/O ratio. We show that these groups can be explained by assuming that the dust-condensation can be cut short before silicates are produced, while the remaining free atoms and molecules can then form the observed magnesium sulfides or the carriers of the unidentified 13 and 20 micron features. Finally, we present the detection of emission features attributed to molecules and dust characteristic to C-type stars, such as molecular SiS, hydrocarbons and magnesium sulfide grains. We show that we often detect magnesium sulfides together with molecular SiS and we propose that it is formed by a reaction of SiS molecules with Mg.Comment: Accepted for publication in A&

    Temperatures of Exploding Nuclei

    Get PDF
    Breakup temperatures in central collisions of 197Au + 197Au at bombarding energies E/A = 50 to 200 MeV were determined with two methods. Isotope temperatures, deduced from double ratios of hydrogen, helium, and lithium isotopic yields, increase monotonically with bombarding energy from 5 MeV to 12 MeV, in qualitative agreement with a scenario of chemical freeze-out after adiabatic expansion. Excited-state temperatures, derived from yield ratios of states in 4He, 5Li, 6Li, and 8Be, are about 5 MeV, independent of the projectile energy, and seem to reflect the internal temperature of fragments at their final separation from the system. PACS numbers: 25.70.Mn, 25.70.Pq, 25.75.-qComment: 10 pages, RevTeX with 4 included figures; Also available from http://www-kp3.gsi.de/www/kp3/aladin_publications.htm
    corecore