The basic mechanism responsible for the widespread condensation of MgS in the
outflows from carbon rich stars on the tip of the AGB is discussed with the aim
of developing a condensation model that can be applied in model calculations of
dust formation in stellar winds.
The different possibilities how MgS may be formed in the chemical environment
of outflows from carbon stars are explored by some thermochemical calculations
and by a detailed analysis of the growth kinetics of grains in stellar winds.
The optical properties of core-mantle grains with a MgS mantle are calculated
to demonstrate that such grains reproduce the structure of the observed 30
μm feature. These considerations are complemented by model calculations of
circumstellar dust shells around carbon stars.
It is argued that MgS is formed via precipitation on silicon carbide grains.
This formation mechanism explains some of the basic observed features of MgS
condensation in dust shells around carbon stars. A weak secondary peak at about
33 ... 36 μm is shown to exist in certain cases if MgS forms a coating on
SiC.Comment: 9 pages, 7 figure