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We calculate the nonlinear cotunneling conductance through interacting quantum-dot systems in the deep
Coulomb blockade regime using a rate equation approach based on the T-matrix formalism, which shows in the
concerned regions very good agreement with a generalized master equation approach. Our focus is on inelastic
cotunneling in systems with weakly broken degeneracies, such as complex quantum dots or molecules. We find
for these systems a characteristic gate dependence of the nonequilibrium cotunneling conductance. While on
one side of a Coulomb diamond the conductance decreases after the inelastic cotunneling threshold toward its
saturation value, on the other side it increases monotonously even after the threshold. We show that this
behavior originates from an asymmetric gate voltage dependence of the effective cotunneling amplitudes.
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I. INTRODUCTION

Quantum dot devices, or so-called artificial atoms, consist
of a small electronic nanostructure tunnel coupled to source
and drain leads. In the Coulomb-blockade regime, sequential
�one-electron� tunneling transport is exponentially sup-
pressed and processes where two or more electrons tunnel
simultaneously become the dominant transport mechanism.1

Among such correlated tunneling processes, cotunneling has
received a lot of interest in recent years. Cotunneling denotes
a two-electron tunneling process which can transfer an elec-
tron coherently from source to drain by a virtual population
of an energetically forbidden charge state of the nanostruc-
ture. As energy is gained from the voltage drop during the
electron transfer, a cotunneling event can leave the structure
in an excited state, in which case one speaks of inelastic
cotunneling. Otherwise the energy state of the island is left
unchanged and the process is called elastic.

Inelastic cotunneling spectroscopy has turned out to be a
useful tool to identify electronic, magnetic, and vibrational
excitations in semiconducting2,3 or carbon-nanotube-based4–7

quantum dots as well as in single-molecule junctions.8–12

Most importantly, the positions of conductance peaks pro-
vide a very direct fingerprint of the excitation spectrum of
the tunnel-coupled nanostructure but also the more detailed
bias dependence or line shape of such inelastic cotunneling
peaks contains valuable information. By now, it is well
understood13–16 how the nonequilibrium pumping of excited
states by the applied bias voltage can give rise to a cusp in
the region where the bias voltage matches the relevant exci-
tation energy. This effect is maximal for a symmetric setup.
Having very different tunnel couplings to respectively source
and drain electrodes implies that the nanostructure �dot or
molecule� is almost equilibrated with one electrode and this
effect no longer shows up. This was confirmed by an experi-
ment by Parks et al.8 where the opening and closing of a
mechanical break junction holding a C60 molecule was
shown to correlate with the weakening and strengthening of
such nonequilibrium cusps near the threshold for excitation
of a vibrational mode in the system.

In the present paper we investigate the nonequilibrium
cotunneling in a variety of complex quantum-dot systems.

For systems designed to have low-energy excitations arising
from weakly broken degeneracies we find a characteristic
gate dependence of the nonequilibrium modulation of the
inelastic cotunneling steps. On one side of the Coulomb dia-
mond, we find the characteristic cusped increase in conduc-
tance at threshold but on the other side of the diamond this
turns into a weakening of the conductance at threshold which
renders the nonlinear conductance entirely monotonous in
bias. We show how this comes about by an asymmetry in the
cotunneling amplitudes for processes which add or remove
one electron from the dot �particle-hole asymmetry�. This
adds an important piece of information to the spectroscopic
toolbox insofar as such a nonequilibrium depression of the
cotunneling step in a symmetrically coupled device should
not be mistaken for a tunnel broadened or thermally smeared
cotunneling step in a very asymmetrically coupled system:
such causes would lead to depression of the cotunneling
steps at both sides of the Coulomb blockade diamond. In
contrast, the peculiarity of our intrinsic effect is that a de-
pression will occur only on one side while one the other the
conductance will retain the typical cusped increase.

The systems we study are all coupled symmetrically to
source and drain so as to maximize the nonequilibrium ef-
fects under scrutiny. They are chosen according to increasing
complexity, namely, a lateral double dot �DD�, a triangular
triple dot �TD�, and a benzene molecule. In all cases only
two dots �or sites in the benzene� are tunnel coupled to the
leads, see Fig. 1. For the triple dot as well as for benzene,
this induces not only a breaking of the symmetry under ro-
tations by n ·120°, respectively, n ·60° �n�Z� but also a de-

FIG. 1. �Color online� Sketch of the setups for different
quantum-dot systems investigated in this work: a DD, a TD, and a
“benzene” quantum dot.
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generacy lifting: while the on-site energies of all uncoupled
sites can be normalized to zero, the contact sites have to be
endowed with a different on-site energy � to mimic the sym-
metry breaking which is likely to result from either tunneling
renormalization7 or electrostatic effects.9,17

To calculate the current and other observables in transport
through quantum dots in the Coulomb blockade regime there
are a number of techniques, each with their advantages and
limitations. Following a real-time transport approach as de-
scribed in Refs. 18–21, one can trace out the leads degrees of
freedom to derive a formally exact generalized master equa-
tion �GME� for the reduced density matrix of the system.
This approach allows for a systematic expansion in the tun-
neling Hamiltonian HT, thus capturing sequential tunneling
from contributions of second order in HT and cotunneling as
a fourth-order process. The GME has the advantage that it is
exact to a desired order. However, already at fourth order in
HT the number of terms is quite large and therefore it is often
practical to use simpler approaches which capture only the
most relevant contributions for each order of the perturbation
theory.

In this work, we focus entirely on the Coulomb blockade
regime and we shall therefore calculate cotunneling rates
within the T-matrix approach.22 This approach is much sim-
pler than the GME, and will be valid deep inside a Coulomb
diamond, even with the further approximations of �i� neglect-
ing the sequential tunneling contributions and �ii� approxi-
mating the denominators in the rates as independent of the
lead electron energy. To ensure that all details in the line
shapes for which we aim are correct, we benchmark the
above mentioned approximations as well as the T-matrix
technique itself by a quantitative comparison to the GME
approach. In general, we find the T-matrix and the GME
approaches to be in good agreement when additional effects
due to level shifts and broadening are irrelevant, namely, in
the regime where the tunneling induced level broadening is
much smaller than the temperature.

The paper is organized as follows: in Sec. II, we introduce
the model Hamiltonian and the relevant expression to calcu-
late the current and conductance in terms of transition rates is
provided. In the end of this section, we discuss different
approximations to the rates. These approximation schemes
are compared against exact fourth order results in Sec. III for
the case of a double-dot model. The triple dot and the ben-
zene molecule are investigated in Sec. IV and the results are
analyzed analytically using the simplest of these approxima-
tions. Conclusions are found in Sec. V

II. MODEL

For convenience the conventions e=1 and �=1 will be
used throughout the paper. A generic quantum dot coupled to
source and drain leads is described by the Hamiltonian

H = HQD + Hleads + HT. �1�

Source and drain leads are represented by two reservoirs of
noninteracting electrons: Hleads=��k���k−���c�k�

† c�k�,
where �=L ,R stands for the left or right lead. The chemical
potentials �� of the leads depend on the applied bias voltage

Vb, which is assumed to be applied symmetrically across the
two junctions so that �L,R=�0�

Vb

2 . In the following we will
measure the energy starting from the equilibrium chemical
potential �0=0. The Hamiltonian of the quantum dot itself
depends of course on the underlying nanostructure, be they
quantum dots defined on semiconducting heterostructures,23

carbon nanotubes,24 or molecules bridging two contacts.25

We consider here some archetypal model for quantum dots.
They can be described as two or more �M� localized states
coupled among each other. Following the semiempirical
modeling of benzene,26–29 we study here model Hamilto-
nians given by

HQD = �
j=1

M

�
�

�� j − �Vg�dj�
† dj� + U�

j=1

M

nj↑nj↓ + �
�ij�

bijdi�
† dj�

+ �
���

�
i	j

Vijni�nj��, �2�

where � j is the on-site energy of the level j. In Sec. IV we
will set � j =0, except for the two sites coupled to the con-
tacts, for which we assume � j =�
U ,Vij, establishing a
weakly broken degeneracy. The parameter bij 	0 describes
the hopping of electrons between nearest-neighboring states
i , j. U accounts for the on-site charging energy, while Vij is
the interaction between two states. The first term accounts
for the influence of a gate voltage Vg with � being the gate
coupling parameter. Its actual value strongly depends on the
fabrication technique used for creating the quantum dot10 and
typically ranges in order of magnitude from 10−3−1. As it
simply acts as a scaling factor on the gate voltage, we can set
�=1 throughout this paper without loss of generality. The
leads couple only to some of these localized states and the
corresponding tunneling Hamiltonian is described by

HT = �
k��

�t��dj��
† c�k� + t�c�k�

† dj��� , �3�

where dj��
† creates an electron in the single particle state �j��

which couples to lead �. The tunneling Hamiltonian HT is
treated as a perturbation to HQD+Hleads. In this work we
investigate a DD, a TD, and a benzene molecule, correspond-
ing to M =2,3 ,6 in Eq. �2�, connected to source and drain as
illustrated schematically in Fig. 1. We give an overview of
their relevant properties in Secs. III and IV. As we shall
show, weakly broken degeneracies in the TD and benzene
give rise to qualitatively different inelastic cotunneling pro-
files at different gate voltages. This is in contrast to the DD
which has a nondegenerate ground state and therefore less
structure in its cotunneling amplitudes.

Calculating the cotunneling current

To make calculations easier, we shall assume �
kBT

�
EC. Here, EC is the addition energy, which can, in prin-
ciple, be expressed in terms of U and Vij, but with increasing
number of sites in an increasingly unhandy way. The value
of the level broadening � must stay well below the thermal
energy kBT in order to justify a perturbative approach to
transport. The degeneracy lifting � is much smaller than EC
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but exceeds both � and the thermal energy by far. In this
case, the reduced density matrix remains diagonal because
one can exclude coherences between the no longer degener-
ate states and the rate equations are simpler.21,30,31 Moreover,
normal metal leads are considered, such that a rate equation
approach to transport is sufficient.

For the sequential tunneling rates, a GME approach18–20

yields the same result as Fermi’s golden rule with HT being
the perturbation. The latter scheme can be iterated to include
higher order tunneling processes by making use of the T
matrix

T�E� = HT + HT
1

E − H0 + i0+T �4�

from which transition rates from the initial to the final state
can be calculated up to a given order in HT.

In general, the emerging T-matrix rates differ from the
corresponding GME rates. The latter are exact to a given
order in perturbation theory, and explicitly exclude all reduc-
ible terms,32–34 i.e., divergences caused by the denominator
in Eq. �4� going to zero. By construction the T matrix misses
in each order contributions guaranteeing these exclusions via
a cancellation of reducible terms. Therefore unavoidable di-
vergences emerge with the T-matrix technique from fourth
order in the perturbation and onward.35,36 Meanwhile, regu-
larization schemes to remove the divergence appearing in the
fourth-order T matrix rates have become standard32–34 and
the T-matrix approach has been applied to various setups,
e.g., to a double-dot structure13 or to molecular systems
where electronic and vibronic degrees of freedom can be
strongly coupled.32 In this context, it is important to stress
that the standard way of regularizing the T-matrix rates does
not exactly reproduce the GME intrinsic regularization but
the discrepancy between T-matrix and exact perturbation
theory turns out to vanish deep inside the Coulomb blockade.
The same holds for further fourth-order contributions in-
cluded by the GME which cannot necessarily be brought into
the form of a squared matrix element36 and are disregarded
by the T-matrix approach.

We label now the states of the quantum dot with their
particle number N, the Sz component of their spin with � and
an additional quantum number with l. The T-matrix rate for a
transition between two states �N�l����→ �Nl�� of the
quantum-dot system is then given by22

��Nl���N�l���� = 2�
f ,i
��fNl��HT

+ HT
1

EiN�l���
− HQD − Hleads + i0+HT�iN�l�����2

�WiN�l���
��EfNl�

− EiN�l���
� . �5�

Here the sum is over all possible initial �i� and final �f� states
of the overall system including the leads, �iN�l����
= �N�l�����iL��iR�, weighted by a thermal distribution function
WiN�l���

. The rate from Eq. �5� comprises the dominant

fourth-order contributions deep inside the Coulomb dia-
monds, namely, the cotunneling effects.

The rate equation describing the dynamics of the occupa-
tion probabilities of the states reads

ṖNl� = − �
N�l���

��N�l�����Nl��P
Nl� + �

N�l���

��Nl���N�l����P
N�l���,

�6�

where PNl��t� is the probability of finding the dot in the state
�Nl�� at time t. The stationary solution �t→�� is therefore
given by

�
N�l���

��N�l�����Nl��Pstat
Nl� = �

N�l���

��Nl���N�l����Pstat
N�l��� �7�

with the normalization condition

�
Nl�

Pstat
Nl� = 1. �8�

With the help of the stationary solution, we arrive at an ap-
proximate expression for the current up to fourth order in HT

I = Isequential + Icotunneling �9�

with the second order

Isequential = �
Nl�

�
l���

���N+1l�����Nl��
L − ��N−1l�����Nl��

L �Pstat
Nl�

�10�

and fourth-order contribution

Icotunneling = �
Nl�

��
l���

���Nl�����Nl��
RL − ��Nl�����Nl��

LR �	Pstat
Nl�.

�11�

Here, the superscripts to the rates indicate at which lead �
the tunneling processes take place. Truncating the general
expression in Eq. �5� for the rate to second order, we retain
only one tunneling event, which can either involve the left or
the right lead. For the stationary current flow, we merely
need to consider the balance between in- and out-tunneling at
one of the electrodes, and we have chosen in Eq. �10� the left
one, �=L.

The fourth-order cotunneling events transfer an electron
fully across the quantum dot, which involves two tunneling
events at distinct leads. Therefore the resulting current is
given by the balance between charge transfer from left to
right �RL� and from right to left �LR�. The cotunneling rates
emerging from Eq. �5� can be written as

��Nl���Nl����
eff = 2�

f ,i
��fNl��Hint

N �iNl�����
2

�WiNl���
��EfNl�

− EiNl���
� , �12�

where Hint
N is given by

Hint
N = �

�k�
�

��k���

t�t��h���
ll� �Nl���Nl����c�k�

† c��k��� �13�

with matrix elements
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h���
ll� =��

l���

�Nl��dj���N + 1l�����N + 1l����dj����
† �Nl����

ENl��� − EN+1l��� + �k��� + i0+ 	
+��

l���

�Nl��dj��
† �N − 1l�����N − 1l����dj�����Nl����

EN−1l��� − ENl��� + �k� − i0+ 	 .

�14�

Note that the effective cotunneling Hamiltonian �13� now
takes the form of a generalized Kondo, or Coqblin-Schrieffer
model,37 depending on the symmetries of the states �Nl��.

1. Approximation I

To calculate the rates in Eq. �12� analytically, we neglect
in a first approximation the �k� energy dependence in the
denominators of Hint

N . This is justified for small �compared to
the charging energy� bias voltages so that the electrons that
tunnel to and from the leads have energies around the equi-
librium chemical potential and thus �EN�1l���−ENl����
� ��k�� , ��k����. Converting the sums over k ,k� into integrals
assuming a flat band with constant density of states, a simple
integration leads to the cotunneling rates

��Nl���Nl����
eff,RL = 2�

���

�L�R
− �ENl��� − ENl�� − Vb�

� ��
���

���L��Rt�t��h���
ll� �2nB�ENl� − ENl��� − Vb� ,

�15�

where nB�x�= 1
exp��x�−1 is the Bose function, � is the inverse

temperature, and �� is the density of states in lead �. This
approximation is valid for gate and bias voltages inside the
N-electron Coulomb diamond. We refer to this approxima-
tion as AprxI.

2. Approximation II

Alternatively, to get a more precise description of the in-
elastic cotunneling conductance �when �L−�R�ENl�−EN0�,
we can take into account the energy dependence of Hint

N . By
shifting the integration variables �k�→�k�+�� in Eq. �14�,
we see that Hint

N now explicitly depends on �L, �R and there-
fore on the bias voltage. In the rates, we get expressions of
the form

� � d�f���
1 − f�� + �L − �R + ENl� − ENl�����

�
1

� − E1 � i0+

1

� − E2 � i0+ , �16�

where E1 and E2 depend on l� and l��� and the summation

indices in h���
ll� . If E1=E2, Eq. �16� cannot be evaluated di-

rectly, because of divergences stemming from second order
poles. This problem was stated already in 1994,33 and a regu-
larization scheme has been developed and become standard
within the T-matrix approach to transport.32,34 In this regu-
larization scheme, a finite width ��� is attributed to the

states which enter the denominators as imaginary parts. This
level broadening physically stems from the tunnel coupling
but is not taken into account by the T-matrix approach. Thus
the poles are shifted away from the real axis so that the
integral can actually be performed. The resulting expression
can be expanded in powers of � and the leading term is
found to be of order 1 /�. Together with the prefactor of the
rates, �2, this term is identified to be a sequential tunneling
term. It is excluded to avoid double counting of sequential
tunneling processes. The next to leading order term is of
order �0 and gives the regularized cotunneling rate. At this
point, the actual value of the broadening does not matter and
the limit �→0 can safely be taken. The calculation of the
current with regularized cotunneling processes and disre-
garding sequential tunneling rates 
Isequential=0 in Eq. �9��,
we refer to as AprxII.

3. T-matrix

Both AprxI and AprxII are expected to fail when cotun-
neling assisted sequential tunneling processes become acces-
sible. This can happen well inside the Coulomb diamond,
when excited N particle states are populated via inelastic
cotunneling. Indeed, at the lines given by the equation
�Vg�EN�1l��ENl���+��=0, l��0 �dashed lines inside
the Coulomb diamond in Fig. 3� the cotunneling rates be-
come negative which leads to an ill-defined set of rate equa-
tions, unless we include also sequential tunneling terms and
allow also states with N�1 to be populated. This is exactly
the T-matrix approach, referred to as Tmat in the following.

III. INELASTIC COTUNNELING IN A
DOUBLE DOT

In this section we discuss inelastic cotunneling features of
the simplest model described by Eq. �2�, namely, by a DD
system. Additionally, it is used as a benchmark for the
T-matrix approach Tmat as well as for AprxI and AprxII
against a calculation based on the GME approach.

The spectrum of the DD system is shown in Fig. 2 at
Vg=20�b�, corresponding to the center of the N=2 diamond
in Figs. 3 and 4. The N=1 states are even and odd combina-
tions of electron states on the left and right dot with energies
Ee/o= �b. For the N=2 states, we have a singlet ground state
and an excited triplet state, separated by �2=0.5
V−U
+�16b2+ �U−V�2�. Notice the particle-hole symmetry of this
system, which is responsible for the symmetry of the stabil-
ity diagram around this value of the gate voltage.

In Fig. 3, we show a sketch of the stability diagram for the
DD together with additional excitation lines. All the lines
follow from energetical considerations involving the spec-
trum, see Fig. 2, and the chemical potential of the leads. We
focus on the energy range relevant to the case where the dot
is singly or doubly occupied, i.e., to the Coulomb diamonds
with N=1 and N=2. Red lines indicate positions for transi-
tions between states with zero and one, green lines between
states with one and two, and blue lines between states with
two and three electrons, respectively. Solid lines are for
ground state to ground-state transitions and define the Cou-
lomb blockade regions with N=1 and N=2, dashed lines
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involve excited states. The dotted horizontal lines indicate
the onset of the inelastic cotunneling in the two diamonds. In Fig. 4, the conductance through the DD calculated with

Tmat is plotted on a logarithmic color scale. One can see
nicely the features in the dI /dV at the positions of the lines
in Fig. 3 and the general resemblance of the two figures.
Inside the diamonds, at Vb=�1 or Vb=�2 the threshold for
inelastic cotunneling is visible as horizontal lines. The onset
of the cotunneling assisted sequential tunneling �see dashed
lines in Fig. 3� can be noticed best in the N=1 diamond.
Outside the diamonds, all the sequential tunneling lines can
be seen.

We are now going to compare the different approximation
schemes for the cotunneling rates as discussed in the previ-
ous section with the exact perturbation theory �GME�. In Fig.
5, we show the differential conductance as a function of the
bias voltage at the center of the N=1 diamond, as indicated
by the dashed white line in Fig. 4. We see that AprxI yields
good agreement with the GME only at small bias voltages. In
particular, the line shape at the inelastic cotunneling thresh-
old is not reproduced correctly, because the condition of va-
lidity for AprxI, �
EC, is not fulfilled here. We see that the
other approaches predict an increasing differential conduc-
tance for larger bias voltages, which can be understood from
the �k dependence in the denominators in Eq. �14�.

AprxII and GME agree nicely as long as gate and bias
voltages are such that one is in the innermost diamond de-
fined by the dashed lines �see Fig. 3�. Outside of this region,
AprxII is no longer valid: Once the cotunneling assisted se-
quential tunneling sets in, the cotunneling rates in AprxII can
become negative and the rate equations are ill-defined.

Inside the overall Coulomb diamond, the Tmat and GME
yield almost exactly the same result. Small relative devia-
tions �few percent� between the two approaches can be seen
at the resonant lines �see inset in Fig. 5�, which can be at-
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FIG. 2. �Color online� Spectrum of a double quantum dot, as
described by Eq. �2� with M =2. The gate voltage was set to Vg

=20�b�, which corresponds to the center of the N=2 diamond �see
also Figs. 3 and 4�. The splitting of the N=1 states is �1=−2b, the
singlet-triplet splitting for the N=2 states is �2=0.5
V−U
+�16b2+ �U−V�2�. The interaction parameters are U=20�b� and V
=10�b�.

FIG. 3. �Color online� Sketch of the stability diagram for the
double quantum dot described by Eq. �2� with M =2 and parameters
U=20�b� and V=10�b�. Red lines indicate a transition between states
with zero and one, green lines between states with one and two,
blue lines between two and three electrons. Solid lines are for
ground state to ground-state transitions and define the Coulomb
blockade regions, dashed lines involve excited states. We have la-
beled the participating states by Ni. It indicates the ith N electron
state, with associated energy Ei �for example, the one electron
ground state is labeled with 10, the first excitation with 11, and so
on�. Furthermore, the dotted lines indicate the onset of the inelastic
cotunneling at Vb=�1 in the N=1 and at Vb=�2 in the N=2
diamond.
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FIG. 4. �Color online� Logarithm �log10� of the differential con-
ductance dI /dV for the double quantum dot as a function of gate
and bias voltage calculated with the T-matrix approach. One recog-
nizes the features in the dI /dV discussed schematically in Fig. 3.
Vertical dashed lines indicate the cuts used in Figs. 5 and 6. Param-
eters are as in Figs. 2 and 3, together with kBT=0.02�b�, �L=�R

=0.008�b�. Here, as well as in all following plots, the differential
conductance is measured in units of ��e2 /h, with the scaling fac-
tor �ª�L�R / �b�2.
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tributed to a certain class of terms in the rates not taken into
account by the T matrix.36

In the N=2 particle diamond, a better separation of the
energy scales defined by the addition energy and the inelastic
cotunneling threshold is given. As expected, all approxima-
tion schemes and the GME give almost exactly the same
result at the center of the diamond �see lower set of lines in
Fig. 6�. More toward the N=1,2 charge degeneracy point, at
Vg=13�b�, we see that AprxI gives still a good qualitative
description of the line shape of the conductance, but as in the

N=1 diamonds it fails to reproduce the increase in the con-
ductance due to the bias dependence of the denominators of
the rates. The decrease in the conductance after the inelastic
cotunneling threshold is due to the nonequilibrium redistri-
bution of the population of the excited state. At low bias,
only the ground state is populated and only cotunneling pro-
cesses that do not change the occupation of the ground state
are possible. When the bias is large enough to populate the
excited state, the conductance suddenly increases due to the
new possibilities of transferring electrons from left to right
lead. The excited state starts to acquire a finite nonequilib-
rium population from this point on and together with the
increasing depopulation of the ground state this leads typi-
cally to a decrease in the differential conductance after the
sudden increase at the threshold. We will discuss the behav-
ior of the conductance at the inelastic cotunneling threshold
in more detail in the next section. Since the DD is particle-
hole symmetric, cuts through the N=2 diamond at the same
distances from the center toward the N=1, 2 and N=2, 3
charge degeneracy points give exactly the same result.

IV. INELASTIC COTUNNELING IN DOTS WITH WEAKLY
BROKEN DEGENERACIES

Systems with slightly broken symmetries, e.g., molecules
in a single-molecule junction, exhibit weakly broken degen-
eracies, where the splitting of the originally degenerate states
is much smaller than the addition energy. These systems pro-
vide a separation of energy scales which allows us to inves-
tigate inelastic cotunneling effects that are largely unaffected
by charge fluctuations. From a technical point of view, this
brings us into the validity range of the simplest approxima-
tion on the cotunneling rates �AprxI�. We assume in the fol-
lowing a site-independent hopping bij =b	0 for nearest
neighbors i , j and a shift of the on-site energies of the con-
tacted sites by �=−0.1�b�.

A. Triangular triple dot

A triple quantum-dot system is described by HQD in Eq.
�2� with M =3. We assume that the left lead is coupled to dot
1 and the right lead to dot 2. The coupling of dots 1 and 2 to
the leads breaks the symmetry of the isolated molecule, and
in accordance with our previous statements we set thus �2
=�1=�, �3=0. The corresponding energy spectrum is shown
in Fig. 7 as a function of the number N of electrons in the
triple quantum dot. The gate voltage is chosen such that the
lowest energy occurs when the TD is filled with N=3 elec-
trons.

For �=0 the N=3 ground state is both spin and orbitally
degenerate. We label these orbitals with l=1,2. For finite �,
they will split by an energy of �E�l=2�−E�l=1��=����,
where ���=−0.1�b�� is much smaller than the addition en-
ergy EC=UN=3

add �see Fig. 7, inset�. The next excited state with
N=3 is separated by an energy comparable to the addition
energy and can thus be disregarded.

In Fig. 8, we focus now on the situation when the system
is filled with three electrons. For low temperatures, sequen-
tial tunneling is exponentially suppressed at small bias volt-

FIG. 5. �Color online� Differential conductance dI /dV as a func-
tion of bias voltage calculated with the different approximation
schemes discussed in Sec. II as well as with the GME at the center
of the N=1 diamond corresponding to Vg=4.8�b�. AprxII yields
divergences in the conductance at resonances. The Tmat and GME
show features at these positions but are well behaved. They agree
almost exactly. Parameters are as in Fig. 4.

FIG. 6. �Color online� Differential conductance dI /dV as a func-
tion of bias voltage calculated with different approximation
schemes in the N=2 diamond at Vg=13�b� �upper set of lines� and at
the center of the diamond corresponding to Vg=20�b� �lower set of
lines�. Due to the particle-hole symmetry of the DD, the two cuts at
Vg=13�b� and Vg=27�b� give exactly the same result.
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ages and the current is dominated by cotunneling events. We
show the cotunneling conductance calculated with AprxI as a
function of gate and bias voltage. The inelastic cotunneling
threshold is clearly seen as a horizontal line at Vb=�. In Fig.
9, we show three cuts of the cotunneling conductance at

different gate voltages �calculated with AprxI and AprxII�,
one at the center, two toward the corners of the N=3 dia-
mond, as indicated by the dashed white lines in Fig. 8. As
one can see from the comparison of the three cuts in Fig. 9,
the magnitude of the conductance as well as the exact line
shape now depends strongly on the gate voltage. At the cen-
ter of the diamond �at Vg�0.56�b��, and even better pro-
nounced at lower gate voltages �e.g., at Vg=−0.60�b��, the
conductance shows the expected behavior: it is constant be-
low the inelastic cotunneling threshold, and above it shows a
step with a cusp. The origin of this cusp lies in the nonequi-
librium redistribution of the occupation probabilities of the
two orbitals. For bias voltages below the threshold, only the
ground state is populated. Above, the occupation probability
of the excited state rises and increases with the bias, heading
toward its saturation value. Until the saturation value is
reached, the conductance will change with the bias. This also
true for the cut at Vg�1.82�b�, however, there is no cusp, but
a steady further increase in conductance above the inelastic
cotunneling step. To understand this different behavior, we
analyze the expression for the cotunneling current and the
underlying rates.

We allow only the orbitals of the split ground state to be
populated. We therefore have to solve the rate Eqs. �7� and
�8� for PN=3l�. For zero magnetic field, we expect PN=3l↑

= PN=3l↓ and conveniently we can reduce the problem to two
independent variables Pl=��PN=3l�, l=1,2, where the index
N=3 has been dropped. The following analysis is now per-
formed under the assumptions that T=0, Vb�0, and
E�l=1�	E�l=2� without loss of generality.

The current is then given by

I = �
ll�

��l���l�
RL Pl �17�

and the differential conductance follows as
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FIG. 7. �Color online� Spectrum of the triple dot at Vg

=1.14�b� �center of the N=3 Coulomb diamond�. The addition en-
ergy EC=UN=3

add for N=3 can be read off as the distance between the
N=3 and the N=2 ground state plus the distance between the N
=4 and the N=3 ground state. The splitting � of the N=3 ground
state is about a hundred times smaller than the addition energy �see
inset�. Parameters are U=5�b�, V=2�b�, and �=−0.1�b�.
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FIG. 8. �Color online� Color-coded cotunneling conductance of
a TD well inside the N=3 Coulomb diamond. The conductance in
general is lowest at the center of the diamond and increasing when
moving the gate toward the diamonds with N�1. The onset of
inelastic cotunneling at Vb=� is clearly visible as a jump in the
conductance. The charge degeneracy points are at Vg=−0.84�b�
�with N=2� and at Vg=1.98�b� �N=4�. Parameters as in Fig. 7, with
additionally kBT=8�10−4�b�, �L=�R=8�10−5�b�.

FIG. 9. �Color online� Cotunneling conductance of a TD vs bias
voltage at the positions indicated by the white dashed lines in Fig.
8. The line shape as well as the magnitude depend on the gate
voltage. The solid/dashed/dot-dashed curves are calculated with
AprxI, their dotted companions with AprxII. The two approaches
agree well for low bias voltages Vb
UN=3

add .
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dI

dVb
= �

ll�
���l���l�

RL dPl

dVb
+ Pl

d

dVb
��l���l�

RL 	 . �18�

Here, ��l���l�
RL is the cotunneling rate for changing the quantum

dot from the state l to l� and thereby transferring an electron
from the left to the right lead. Within AprxI, we can write the
total rate ��l���l� as in Eq. �15�

��l���l� = �
���

��l���l�
��� = �

���

��l���l�
��� ����� − �� + El� − El�

����� − �� + El� − El� , �19�
where ��l���l�

��� depends on the gate voltage only and the re-
maining terms depend only on the bias voltage. We are es-
pecially interested in the conductance slightly above the in-
elastic cotunneling threshold, where Vb=�+� ,�→0+. At this
point, still P1�1 and P2�0, while�

dP1

dVb
�Vb=�+�	0,�

dP2

dVb
�Vb=�+�

�0, and d
dVb

��l���l�
RL =��l���l�

RL . With these inputs, we get for the
conductance

� dI

dVb
�

Vb=�+�

= 
��1��1�
RL + ��2��1�

RL − ��1��2�
RL − ��2��2�

RL �
dP1

dVb

+ ���1��1�
RL + ��2��1�

RL �P1 + ���1��2�
RL + ��2��2�

RL �P2.

�20�

From this expression, one sees that if ��2��2�
RL is large, the

contribution containing P2, which grows with raising bias,

can win, so that the conductance does not show a cusp, but
increases monotonously after the step. In other words, with a
sufficiently large value of ��2��2�

RL , the conductance will keep
growing once the state l=2 starts to be increasingly occupied
at Vb��. Below the threshold, the elastic cotunneling con-
ductance is set by the prefactor to P1 in Eq. �20�. At very
large bias, however, the two states become equally popu-
lated, the first line in Eq. �20� vanishes and the with a large
value for ��2��2�

RL , the saturation conductance can become much
larger than the elastic subthreshold conductance. This im-
plies that a monotonous increase in the conductance across
the threshold will be accompanied by a large step height, i.e.,
a large difference between the conductance at Vb=0 and at
Vb��. This is clearly seen to be the case in Fig. 9.

One can make the above statements about large couplings
more precise, by inserting the stationary solutions for P1 and
P2 given by

P1 =
��1��2�

��1��2� + ��2��1�
, P2 =

��2��1�

��1��2� + ��2��1�
�21�

into the second derivative of the current at Vb=�+�. From
this, one obtains

� d2I

dV2�
Vb=�+�

= − 2
��2��1�

RL ����1��2�
RL − ��2��1�

RL ����1��1�
RL − ��2��2�

RL � + 4��2��1�
RL ��1��2�

RL �

��2��1��2�
RL + ��1��2�

LL + ��1��2�
RR �2

− 2
��2��1�

RL ���2��1�
RL + ��1��1�

RL − ��1��2�
RL − ��2��2�

RL ����1��2�
LL + ��1��2�

RR �

��2��1��2�
RL + ��1��2�

LL + ��1��2�
RR �2

,

�22�

which is positive, thus giving rise to a monotonously increasing cotunneling conductance, whenever

��2��2�
RL � ��1��1�

RL +
���2��1�

RL − ��1��2�
RL ����1��2�

LL + ��1��2�
RR � + 4��2��1�

RL ��1��2�
RL

��1��2�
RL − ��2��1�

RL + ��1��2�
LL + ��1��2�

RR . �23�

The question now remains, under which circumstances this condition can be fulfilled. To answer this question, we have to
analyze the transition amplitudes

��l��l��
RL = �

���
��

l���

�Nl��djR��N + 1l�����N + 1l����djL��
† �Nl����

ENl� − EN+1l�
+ �

l���

�Nl��dR�
† �N − 1l�����N − 1l����djL���Nl����

EN−1l� − ENl�
	 . �24�

We see that they depend on the overlap matrix elements of
the tunneling Hamiltonian in the numerator and on the en-
ergy differences of the states involved in the cotunneling
process in the denominator. � is small compared to the ad-
dition energy, and we keep a distance to the edges of the

diamonds, so that for our analysis, we can set EN=3�l=1�
=EN=3�l=2� in the denominator of the above expression.
However, as we approach one of the two charge degeneracy
points �either N↔N+1 or N−1↔N� on the axis of the gate
voltage, the contributions

BEGEMANN et al. PHYSICAL REVIEW B 82, 045316 �2010�

045316-8



�Nl�djR��N + 1g��N + 1g�djL��
† �Nl��

ENl� − EN+1g
�25�

or

�Nl�djL�
† �N − 1g��N − 1g�djR���Nl��

EN−1g − ENl�
�26�

with �N�1g� being the ground states with N�1 electrons,
are dominant in Eq. �5�. The excited states contribute as well
but less due to the energy difference in the denominator and
their influence will not change the qualitative behavior of the
differential conductance. It is therefore necessary to analyze
separately the matrix elements �Nl���dj���N+1g� and
�N−1g���dj���Nl��. These are compared in Fig. 10, where
we also investigate the behavior of the quasidegenerate lev-
els as a function of the degeneracy lifting �. Plotting the
energies of the two levels with l=1,2 versus �, we see that
for �	0, the state with l=1 is the ground state, but for �
�0 the state with l=2 has lower energy. The overall depen-
dence of the matrix elements on � is rather weak, but the
coupling to the ground states with N�1 electrons of these
two states is seen to be very different. The matrix element of
the N−1 ground state with l=1 is about twice as large as the
one with l=2, while for the elements with the N+1 ground
state, this situation is reversed. This is reason why by chang-
ing the gate voltage one can tune the system into a configu-
ration where ��2��2�

RL by far exceeds ��1��1�
RL such that the con-

ductance increases monotonously even after the inelastic
cotunneling threshold.

The cuts in Fig. 9 were done for �	0. Choosing instead
��0, the picture would be reversed and the conductance at
lowest gate voltages �close to the side of the N−1 diamond�
would be monotonously increasing while the conductance
close to the N+1 diamond would now show the cusped line
shape.

B. Benzene

We find exactly the same effect for a singly charged �N
=7� benzene molecule coupled to the leads in metaconfigu-
ration. The spectrum of benzene exhibits a lot of degenera-
cies due to the D6h symmetry of the molecule.29 The envi-
ronment of a molecular junction can break the perfect
symmetry of the molecule in various ways.30 As for the triple
dot, we model this by ascribing a different on-site energy to
the contact sites. We diagonalize HQD exactly, and use the
eigenstates and eigenvalues for each charge state to calculate
all relevant cotunneling rates. The energy spectrum is shown
in Fig. 11 and we now focus on the inelastic cotunneling
corresponding to the weakly broken degeneracy in the N=7
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FIG. 10. �Color online� Left panel: the quasidegenerate N=3 ground states of a TD with l=1,2 as a function of the degeneracy lifting
parameter �. For �	0, the state with l=1 is the ground state, for ��0 the l=2 state has lower energy. Right panel: overlap matrix elements
of the levels l=1,2 to the ground states of N�1 particles. �a� �N−1g���dj���Nl=1�, �b� �N−1g���dj���Nl=2�, �c� �Nl=1���dj���N+1g�, and
�d� �Nl=2���dj���N+1g�.

FIG. 11. �Color online� Spectrum of the benzene molecule for
N=6 �neutral molecule�, N=7 and N=8 electrons. The initially de-
generate N=7 ground state is split due to the coupling to the leads
�see inset�. Parameters are U=4�b�, V=2.4�b�, and �=−0.1�b�.
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state. In Fig. 12, we show three cuts through the N=7 Cou-
lomb diamond of benzene at different gate voltages, one cor-
responding to the center and two toward the charge degen-
eracy points with N=6 and N=8. Also here, the line shape at
the inelastic cotunneling threshold has a marked dependence
on the gate voltage arising from a pronounced gate-voltage
asymmetry in the cotunneling amplitudes. Closer to the N
=6 diamond, virtual tunneling-out processes are closer to
resonance �have a smaller energy denominator� and closer to
the N=8 diamond virtual tunneling-in processes dominate.
As for the TD, the monotonously increasing conductance
closer to the N=8 diamond is clearly seen to also have a
larger step height.

V. CONCLUSIONS

In conclusion, we investigated cotunneling phenomena in
complex quantum-dot systems and demonstrated that sys-
tems with weakly broken degeneracies can exhibit a marked
gate-voltage dependence of the nonlinear cotunneling con-
ductance traces. The effect relies on the nonequilibrium
population of the excited state and is therefore most pro-

nounced in devices coupled symmetrically to source and
drain electrodes. The inelastic cotunneling threshold was
found to be modulated so as to become either cusped or
monotonously increasing, depending on whether the stron-
gest transport channel is via the ground state or via the first
excited state.

In Ref. 7, the inelastic cotunneling thresholds were shown
to acquire a gate dependence due to the difference in
tunneling-induced level shifts for the two different levels in-
volved. Whereas that effect shows up with only tunnel cou-
pling to a single lead, it is important to recognize that the
gate-dependent modulation of the step which we discuss here
relies entirely on the coupling to two different leads. Enter-
ing the Kondo regime for which such level shifts become
important, both effects could be observed simultaneously and
therefore it would be interesting to study this stronger
coupled regime more closely in future studies.

From the technical point of view, we have demonstrated
that the widely used simplification of the T-matrix approach
�AprxI� is indeed in quantitative agreement with the exact
fourth order perturbation theory �GME� in regions of gate
and bias voltage for which sequential tunneling resonances
are strongly suppressed. With a poorer separation of energy
scales, i.e., when the inelastic cotunneling threshold is no
longer much smaller than the charging energy, AprxI is in-
sufficient but approximation AprxII and the T-matrix ap-
proach still perform very well and have a fairly large range
of validity, within which they yield good agreement with the
GME results. In particular, they describe very well the line
shape of the inelastic cotunneling conductance for systems
with weakly broken degeneracies, i.e., with �
EC. AprxI
gives rise to substantial simplifications and allows writing
occupation numbers and current in closed analytic form, de-
spite the potential complexity of the underlying quantum-dot
systems which is now wrapped up in the virtual transition-
amplitudes comprising the effective exchange-cotunneling
matrix elements, see Eq. �14�. As such, AprxI can also be
used for the investigation of Kondo-enhanced inelastic
cotunneling6 in more complex quantum dot or single-
molecule systems, where the most relevant terms in higher
order perturbation theory will be the log-singular terms un-
derlying the Kondo effect.

ACKNOWLEDGMENTS

We thank Andrea Donarini for fruitful discussions. We
acknowledge financial support by the DFG within the re-
search programs SPP 1243 and SFB 689.

1 H. van Houten, C. W. J. Beenakker, and A. A. M. Staring, Single
Charge Tunneling: Coulomb-Blockade Phenomena in Nano-
structures �Plenum Press and NATO Scientific Affairs Division,
New York, 1992�.

2 R. Schleser, T. Ihn, E. Ruh, K. Ensslin, M. Tews, D. Pfannkuche,
D. C. Driscoll, and A. C. Gossard, Phys. Rev. Lett. 94, 206805

�2005�.
3 S. De Franceschi, S. Sasaki, J. M. Elzerman, W. G. van der Wiel,

S. Tarucha, and L. P. Kouwenhoven, Phys. Rev. Lett. 86, 878
�2001�.

4 S. Sapmaz, P. Jarillo-Herrero, J. Kong, C. Dekker, L. P. Kouwen-
hoven, and H. S. J. van der Zant, Phys. Rev. B 71, 153402

FIG. 12. �Color online� Cotunneling conductance vs bias volt-
age for a benzene molecule with N=7 electrons coupled to the leads
in metaconfiguration. The three curves correspond to three values of
the gate voltage being closer to the N=6 �neutral� particle diamond,
at the center of the N=7 diamond and closer to the N=8 diamond.
Parameters are U=4�b�, V=2.4�b� �we consider nearest neighbor
interaction only�, �=−0.1�b�, and the remaining as in Fig. 8.

BEGEMANN et al. PHYSICAL REVIEW B 82, 045316 �2010�

045316-10

http://dx.doi.org/10.1103/PhysRevLett.94.206805
http://dx.doi.org/10.1103/PhysRevLett.94.206805
http://dx.doi.org/10.1103/PhysRevLett.86.878
http://dx.doi.org/10.1103/PhysRevLett.86.878
http://dx.doi.org/10.1103/PhysRevB.71.153402


�2005�.
5 B. Babić, T. Kontos, and C. Schönenberger, Phys. Rev. B 70,

235419 �2004�.
6 J. Paaske, A. Rosch, P. Wölfle, N. Mason, C. M. Marcus, and J.

Nygård, Nat. Phys. 2, 460 �2006�.
7 J. V. Holm, H. I. Jørgensen, K. Grove-Rasmussen, J. Paaske, K.

Flensberg, and P. E. Lindelof, Phys. Rev. B 77, 161406�R�
�2008�.

8 J. J. Parks, A. R. Champagne, G. R. Hutchison, S. Flores-Torres,
H. D. Abruña, and D. C. Ralph, Phys. Rev. Lett. 99, 026601
�2007�.

9 E. A. Osorio, K. O’Neill, M. Wegewijs, N. Stuhr-Hansen, J.
Paaske, T. Bjørnholm, and H. S. J. van der Zant, Nano Lett. 7,
3336 �2007�.

10 E. A. Osorio, T. Bjørnhom, J.-M. Lehn, M. Ruben, and H. S. J.
van der Zant, J. Phys.: Condens. Matter 20, 374121 �2008�.

11 E. A. Osorio, K. Moth-Poulsen, H. S. J. van der Zant, J. Paaske,
P. Hedegård, K. Flensberg, J. Bendix, and T. Bjørnholm, Nano
Lett. 10, 105 �2010�.

12 N. Roch, S. Florens, V. Bouchiat, W. Wernsdorfer, and F. Bal-
estro, Nature �London� 453, 633 �2008�.

13 V. N. Golovach and D. Loss, Phys. Rev. B 69, 245327 �2004�.
14 M. Wegewijs and Yu. Nazarov, arXiv:cond-mat/0103579 �un-

published�.
15 O. Parcollet and C. Hooley, Phys. Rev. B 66, 085315 �2002�.
16 J. Paaske, A. Rosch, and P. Wölfle, Phys. Rev. B 69, 155330

�2004�.
17 K. Kaasbjerg and K. Flensberg, Nano Lett. 8, 3809 �2008�.
18 H. Schoeller and G. Schön, Phys. Rev. B 50, 18436 �1994�.
19 J. König, J. Schmid, H. Schoeller, and G. Schön, Phys. Rev. B

54, 16820 �1996�.
20 J. König, H. Schoeller, and G. Schön, Phys. Rev. Lett. 76, 1715

�1996�.
21 M. Leijnse and M. R. Wegewijs, Phys. Rev. B 78, 235424

�2008�.
22 H. Bruus and K. Flensberg, Many-Body Quantum Theory in

Condensed Matter Physics �Oxford University Press, Oxford,
2004�.

23 L. P. Kouwenhoven, D. G. Austing, and S. Tarucha, Rep. Prog.
Phys. 64, 701 �2001�.

24 A. Bezryadin, A. R. M. Verschueren, S. J. Tans, and C. Dekker,
Phys. Rev. Lett. 80, 4036 �1998�.

25 M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour,
Science 278, 252 �1997�.

26 R. Pariser and R. G. Parr, J. Chem. Phys. 21, 466 �1953�; 21,
767 �1953�.

27 J. A. Pople, Farad. Trans. 49, 1375 �1953�.
28 M. H. Hettler, W. Wenzel, M. R. Wegewijs, and H. Schoeller,

Phys. Rev. Lett. 90, 076805 �2003�.
29 G. Begemann, D. Darau, A. Donarini, and M. Grifoni, Phys.

Rev. B 77, 201406 �2008�.
30 D. Darau, G. Begemann, A. Donarini, and M. Grifoni, Phys.

Rev. B 79, 235404 �2009�.
31 V. Koerting, J. Paaske, and P. Wölfle, Phys. Rev. B 77, 165122

�2008�.
32 J. Koch, F. von Oppen, and A. V. Andreev, Phys. Rev. B 74,

205438 �2006�.
33 D. V. Averin, Physica B 194-196, 979 �1994�.
34 M. Turek and K. A. Matveev, Phys. Rev. B 65, 115332 �2002�.
35 C. Timm, Phys. Rev. B 77, 195416 �2008�.
36 S. Koller, M. Grifoni, M. Leijnse, and M. R. Wegewijs �unpub-

lished�.
37 A. C. Hewson, The Kondo Problem to Heavy Fermions �Cam-

bridge University Press, Cambridge, 1993�.

INELASTIC COTUNNELING IN QUANTUM DOTS AND… PHYSICAL REVIEW B 82, 045316 �2010�

045316-11

http://dx.doi.org/10.1103/PhysRevB.71.153402
http://dx.doi.org/10.1103/PhysRevB.70.235419
http://dx.doi.org/10.1103/PhysRevB.70.235419
http://dx.doi.org/10.1038/nphys340
http://dx.doi.org/10.1103/PhysRevB.77.161406
http://dx.doi.org/10.1103/PhysRevB.77.161406
http://dx.doi.org/10.1103/PhysRevLett.99.026601
http://dx.doi.org/10.1103/PhysRevLett.99.026601
http://dx.doi.org/10.1021/nl0715802
http://dx.doi.org/10.1021/nl0715802
http://dx.doi.org/10.1088/0953-8984/20/37/374121
http://dx.doi.org/10.1021/nl9029785
http://dx.doi.org/10.1021/nl9029785
http://dx.doi.org/10.1038/nature06930
http://dx.doi.org/10.1103/PhysRevB.69.245327
http://arXiv.org/abs/arXiv:cond-mat/0103579
http://dx.doi.org/10.1103/PhysRevB.66.085315
http://dx.doi.org/10.1103/PhysRevB.69.155330
http://dx.doi.org/10.1103/PhysRevB.69.155330
http://dx.doi.org/10.1021/nl8021708
http://dx.doi.org/10.1103/PhysRevB.50.18436
http://dx.doi.org/10.1103/PhysRevB.54.16820
http://dx.doi.org/10.1103/PhysRevB.54.16820
http://dx.doi.org/10.1103/PhysRevLett.76.1715
http://dx.doi.org/10.1103/PhysRevLett.76.1715
http://dx.doi.org/10.1103/PhysRevB.78.235424
http://dx.doi.org/10.1103/PhysRevB.78.235424
http://dx.doi.org/10.1088/0034-4885/64/6/201
http://dx.doi.org/10.1088/0034-4885/64/6/201
http://dx.doi.org/10.1103/PhysRevLett.80.4036
http://dx.doi.org/10.1126/science.278.5336.252
http://dx.doi.org/10.1063/1.1698929
http://dx.doi.org/10.1039/tf9534901375
http://dx.doi.org/10.1103/PhysRevLett.90.076805
http://dx.doi.org/10.1103/PhysRevB.77.201406
http://dx.doi.org/10.1103/PhysRevB.77.201406
http://dx.doi.org/10.1103/PhysRevB.79.235404
http://dx.doi.org/10.1103/PhysRevB.79.235404
http://dx.doi.org/10.1103/PhysRevB.77.165122
http://dx.doi.org/10.1103/PhysRevB.77.165122
http://dx.doi.org/10.1103/PhysRevB.74.205438
http://dx.doi.org/10.1103/PhysRevB.74.205438
http://dx.doi.org/10.1016/0921-4526(94)90819-2
http://dx.doi.org/10.1103/PhysRevB.65.115332
http://dx.doi.org/10.1103/PhysRevB.77.195416

