207 research outputs found

    Autowaves in a dc complex plasma confined behind a de Laval nozzle

    Full text link
    Experiments to explore stability conditions and topology of a dense microparticle cloud supported against gravity by a gas flow were carried out. By using a nozzle shaped glass insert within the glass tube of a dc discharge plasma chamber a weakly ionized gas flow through a de Laval nozzle was produced. The experiments were performed using neon gas at a pressure of 100 Pa and melamine-formaldehyde particles with a diameter of 3.43 {\mu}m. The capturing and stable global confining of the particles behind the nozzle in the plasma were demonstrated. The particles inside the cloud behaved as a single convection cell inhomogeneously structured along the nozzle axis in a tube-like manner. The pulsed acceleration localized in the very head of the cloud mediated by collective plasma-particle interactions and the resulting wave pattern were studied in detail.Comment: 6 pages, 4 figure

    A close halo of large transparent grains around extreme red giant stars

    Full text link
    Intermediate-mass stars end their lives by ejecting the bulk of their envelope via a slow dense wind back into the interstellar medium, to form the next generation of stars and planets. Stellar pulsations are thought to elevate gas to an altitude cool enough for the condensation of dust, which is then accelerated by radiation pressure from starlight, entraining the gas and driving the wind. However accounting for the mass loss has been a problem due to the difficulty in observing tenuous gas and dust tens of milliarcseconds from the star, and there is accordingly no consensus on the way sufficient momentum is transferred from the starlight to the outflow. Here, we present spatially-resolved, multi-wavelength observations of circumstellar dust shells of three stars on the asymptotic giant branch of the HR diagram. When imaged in scattered light, dust shells were found at remarkably small radii (<~ 2 stellar radii) and with unexpectedly large grains (~300 nm radius). This proximity to the photosphere argues for dust species that are transparent to starlight and therefore resistant to sublimation by the intense radiation field. While transparency usually implies insufficient radiative pressure to drive a wind, the radiation field can accelerate these large grains via photon scattering rather than absorption - a plausible mass-loss mechanism for lower-amplitude pulsating stars.Comment: 13 pages, 1 table, 6 figure

    Complex dynamics in a simple model of pulsations for Super-Asymptotic Giant Branch Stars

    Get PDF
    When intermediate mass stars reach their last stages of evolution they show pronounced oscillations. This phenomenon happens when these stars reach the so-called Asymptotic Giant Branch (AGB), which is a region of the Hertzsprung-Russell diagram located at about the same region of effective temperatures but at larger luminosities than those of regular giant stars. The period of these oscillations depends on the mass of the star. There is growing evidence that these oscillations are highly correlated with mass loss and that, as the mass loss increases, the pulsations become more chaotic. In this paper we study a simple oscillator which accounts for the observed properties of this kind of stars. This oscillator was first proposed and studied by Icke et al. [Astron.Astrophys. 258, 341 (1992)] and we extend their study to the region of more massive and luminous stars - the region of Super-AGB stars. The oscillator consists of a periodic nonlinear perturbation of a linear Hamiltonian system. The formalism of dynamical systems theory has been used to explore the associated Poincare map for the range of parameters typical of those stars. We have studied and characterized the dynamical behaviour of the oscillator as the parameters of the model are varied, leading us to explore a sequence of local and global bifurcations. Among these, a tripling bifurcation is remarkable, which allows us to show that the Poincare map is a nontwist area preserving map. Meandering curves, hierarchical-islands traps and sticky orbits also show up. We discuss the implications of the stickiness phenomenon in the evolution and stability of the Super-AGB stars.Comment: 13 pages, 9 figure

    Numerical simulations of stellar SiO maser variability. Investigation of the effect of shocks

    Get PDF
    A stellar hydrodynamic pulsation model has been combined with a SiO maser model in an attempt to calculate the temporal variability of SiO maser emission in the circumstellar envelope (CE) of a model AGB star. This study investigates whether the variations in local physical conditions brought about by shocks are the predominant contributing factor to SiO maser variability because, in this work, the radiative part of the pump is constant. We find that some aspects of the variability are not consistent with a pump provided by shock-enhanced collisions alone. In these simulations, gas parcels of relatively enhanced SiO abundance are distributed in a model CE by a Monte Carlo method, at a single epoch of the stellar cycle. From this epoch on, Lagrangian motions of individual parcels are calculated according to the velocity fields encountered in the model CE during the stellar pulsation cycle. The potentially masing gas parcels therefore experience different densities and temperatures, and have varying line-of-sight velocity gradients throughout the stellar cycle, which may or may not be suitable to produce maser emission. At each epoch (separated by 16.6 days), emission lines from the parcels are combined to produce synthetic spectra and VLBI-type images. We report here the results for v=1, J=1-0 (43-GHz) and J=2-1 (86-GHz) masers.Comment: 16 pages, 8 figures, accepted by A&

    CO observations of symbiotic stellar systems

    Full text link
    We have performed mm-wave observations with the IRAM 30m telescope of the 12CO J=2-1 and J=1-0, 13CO J=2-1 and J=1-0, and SiO J=5-4 transitions in the symbiotic stars R Aqr, CH Cyg, and HM Sge. The data were analyzed by means of a simple analytical description of the general properties of molecular emission from the inner shells around the cool star. Numerical calculations of the expected line profiles, taking into account the level population and radiative transfer under such conditions, were also performed. Weak emission of 12CO J=2-1 and J=1-0 was detected in R Aqr and CH Cyg; a good line profile of 12CO J=2-1 in R Aqr was obtained. The intensities and profile shapes of the detected lines are compatible with emission coming from a very small shell around the Mira-type star, with a radius comparable to or slightly smaller than the distance to the hot dwarf companion, 1014^{14} - 2 1014^{14} cm. We argue that other possible explanations are improbable. This region probably shows properties similar to those characteristic of the inner shells around standard AGB stars: outwards expansion at about 5 - 25 km/s, with a significant acceleration of the gas, temperatures decreasing with radius between about 1000 and 500 K, and densities ~ 109^9 - 3 108^8 cm3^{-3}. Our model calculations are able to explain the asymmetric line shape observed in 12CO J=2-1 from R Aqr, in which the relatively weaker red part of the profile would result from selfabsorption by the outer layers (in the presence of a velocity increase and a temperature decrease with radius). The mass-loss rates are somewhat larger than in standard AGB stars, as often happens for symbiotic systems. In R Aqr, we find that the total mass of the CO emitting region is ~ 2 - 3 105^{-5} Mo, corresponding to M' ~ 5 106^{-6} - 105^{-5} Mo/yr, and compatible with results obtained from dust emission. Taking into account other existing data on molecular emission, we suggest that the small extent of the molecule-rich gas in symbiotic systems is mainly due to molecule photodissociation by the radiation of the hot dwarf star.Comment: 11 pages, 4 figure

    Homochiral growth through enantiomeric cross-inhibition

    Full text link
    The stability and conservation properties of a recently proposed polymerization model are studied. The achiral (racemic) solution is linearly unstable once the relevant control parameter (here the fidelity of the catalyst) exceeds a critical value. The growth rate is calculated for different fidelity parameters and cross-inhibition rates. A chirality parameter is defined and shown to be conserved by the nonlinear terms of the model. Finally, a truncated version of the model is used to derive a set of two ordinary differential equations and it is argued that these equations are more realistic than those used in earlier models of that form.Comment: 20 pages, 6 figures, Orig. Life Evol. Biosph. (accepted

    Herschel/HIFI observations of O-rich AGB stars : molecular inventory

    Get PDF
    Spectra, taken with the heterodyne instrument, HIFI, aboard the Herschel Space Observatory, of O-rich asymptotic giant branch (AGB) stars which form part of the guaranteed time key program HIFISTARS are presented. The aim of this program is to study the dynamical structure, mass-loss driving mechanism, and chemistry of the outflows from AGB stars as a function of chemical composition and initial mass. We used the HIFI instrument to observe nine AGB stars, mainly in the H2O and high rotational CO lines We investigate the correlation between line luminosity, line ratio and mass-loss rate, line width and excitation energy. A total of nine different molecules, along with some of their isotopologues have been identified, covering a wide range of excitation temperature. Maser emission is detected in both the ortho- and para-H2O molecules. The line luminosities of ground state lines of ortho- and para-H2O, the high-J CO and NH3 lines show a clear correlation with mass-loss rate. The line ratios of H2O and NH3 relative to CO J=6-5 correlate with the mass-loss rate while ratios of higher CO lines to the 6-5 is independent of it. In most cases, the expansion velocity derived from the observed line width of highly excited transitions formed relatively close to the stellar photosphere is lower than that of lower excitation transitions, formed farther out, pointing to an accelerated outflow. In some objects, the vibrationally excited H2O and SiO which probe the acceleration zone suggests the wind reaches its terminal velocity already in the innermost part of the envelope, i.e., the acceleration is rapid. Interestingly, for R Dor we find indications of a deceleration of the outflow in the region where the material has already escaped from the star.Comment: 6 Figures in the main paper + 12 further figures in the appendix (to be printed in electronic form) Accepted for publication by A&

    The Spitzer Spectroscopic Survey of S-type Stars

    Get PDF
    S-type AGB stars are thought to be in the transitional phase between M-type and C-type AGB stars. Because of their peculiar chemical composition, one may expect a strong influence of the stellar C/O ratio on the molecular chemistry and the mineralogy of the circumstellar dust. In this paper, we present a large sample of 87 intrinsic galactic S-type AGB stars, observed at infrared wavelengths with the Spitzer Space Telescope, and supplemented with ground-based optical data. On the one hand, we derive the stellar parameters from the optical spectroscopy and photometry, using a grid of model atmospheres. On the other, we decompose the infrared spectra to quantify the flux-contributions from the different dust species. Finally, we compare the independently determined stellar parameters and dust properties. For the stars without significant dust emission, we detect a strict relation between the presence of SiS absorption in the Spitzer spectra and the C/O ratio of the stellar atmosphere. These absorption bands can thus be used as an additional diagnostic for the C/O ratio. For stars with significant dust emission, we define three groups, based on the relative contribution of certain dust species to the infrared flux. We find a strong link between group-membership and C/O ratio. We show that these groups can be explained by assuming that the dust-condensation can be cut short before silicates are produced, while the remaining free atoms and molecules can then form the observed magnesium sulfides or the carriers of the unidentified 13 and 20 micron features. Finally, we present the detection of emission features attributed to molecules and dust characteristic to C-type stars, such as molecular SiS, hydrocarbons and magnesium sulfide grains. We show that we often detect magnesium sulfides together with molecular SiS and we propose that it is formed by a reaction of SiS molecules with Mg.Comment: Accepted for publication in A&
    corecore