Experiments to explore stability conditions and topology of a dense
microparticle cloud supported against gravity by a gas flow were carried out.
By using a nozzle shaped glass insert within the glass tube of a dc discharge
plasma chamber a weakly ionized gas flow through a de Laval nozzle was
produced. The experiments were performed using neon gas at a pressure of 100 Pa
and melamine-formaldehyde particles with a diameter of 3.43 {\mu}m. The
capturing and stable global confining of the particles behind the nozzle in the
plasma were demonstrated. The particles inside the cloud behaved as a single
convection cell inhomogeneously structured along the nozzle axis in a tube-like
manner. The pulsed acceleration localized in the very head of the cloud
mediated by collective plasma-particle interactions and the resulting wave
pattern were studied in detail.Comment: 6 pages, 4 figure