7 research outputs found

    A web-based library consult service for evidence-based medicine: Technical development

    Get PDF
    BACKGROUND: Incorporating evidence based medicine (EBM) into clinical practice requires clinicians to learn to efficiently gain access to clinical evidence and effectively appraise its validity. Even using current electronic systems, selecting literature-based data to solve a single patient-related problem can require more time than practicing physicians or residents can spare. Clinical librarians, as informationists, are uniquely suited to assist physicians in this endeavor. RESULTS: To improve support for evidence-based practice, we have developed a web-based EBM library consult service application (LCS). Librarians use the LCS system to provide full text evidence-based literature with critical appraisal in response to a clinical question asked by a remote physician. LCS uses an entirely Free/Open Source Software platform and will be released under a Free Software license. In the first year of the LCS project, the software was successfully developed and a reference implementation put into active use. Two years of evaluation of the clinical, educational, and attitudinal impact on physician-users and librarian staff are underway, and expected to lead to refinement and wide dissemination of the system. CONCLUSION: A web-based EBM library consult model may provide a useful way for informationists to assist clinicians, and is feasible to implement

    A web-based library consult service for evidence-based medicine: Technical development

    No full text
    Abstract Background Incorporating evidence based medicine (EBM) into clinical practice requires clinicians to learn to efficiently gain access to clinical evidence and effectively appraise its validity. Even using current electronic systems, selecting literature-based data to solve a single patient-related problem can require more time than practicing physicians or residents can spare. Clinical librarians, as informationists, are uniquely suited to assist physicians in this endeavor. Results To improve support for evidence-based practice, we have developed a web-based EBM library consult service application (LCS). Librarians use the LCS system to provide full text evidence-based literature with critical appraisal in response to a clinical question asked by a remote physician. LCS uses an entirely Free/Open Source Software platform and will be released under a Free Software license. In the first year of the LCS project, the software was successfully developed and a reference implementation put into active use. Two years of evaluation of the clinical, educational, and attitudinal impact on physician-users and librarian staff are underway, and expected to lead to refinement and wide dissemination of the system. Conclusion A web-based EBM library consult model may provide a useful way for informationists to assist clinicians, and is feasible to implement.</p

    Ab initio molecular dynamics: Propagating the density matrix with Gaussian orbitals

    No full text
    We propose and implement an alternative approach to the original Car-Parrinello method where the density matrix elements Í‘instead of the molecular orbitalsÍ’ are propagated together with the nuclear degrees of freedom. Our new approach has the advantage of leading to an O(N) computational scheme in the large system limit. Our implementation is based on atom-centered Gaussian orbitals, which are especially suited to deal effectively with general molecular systems. The methodology is illustrated by applications to the three-body dissociation of triazine and to the dynamics of a cluster of a chloride ion with 25 water molecules

    Ab initio molecular dynamics: Propagating the density matrix with Gaussian orbitals

    No full text
    We propose and implement an alternative approach to the original Car-Parrinello method where the density matrix elements Í‘instead of the molecular orbitalsÍ’ are propagated together with the nuclear degrees of freedom. Our new approach has the advantage of leading to an O(N) computational scheme in the large system limit. Our implementation is based on atom-centered Gaussian orbitals, which are especially suited to deal effectively with general molecular systems. The methodology is illustrated by applications to the three-body dissociation of triazine and to the dynamics of a cluster of a chloride ion with 25 water molecules

    Pituitary Gland

    No full text
    corecore