424 research outputs found
Radio-frequency electromagnetic field exposure of Western honey bees
Radio-frequency electromagnetic fields (RF-EMFs) can be absorbed in all living organisms, including Western Honey Bees (Apis Mellifera). This is an ecologically and economically important global insect species that is continuously exposed to environmental RF-EMFs. This exposure is studied numerically and experimentally in this manuscript. To this aim, numerical simulations using honey bee models, obtained using micro-CT scanning, were implemented to determine RF absorbed power as a function of frequency in the 0.6 to 120 GHz range. Five different models of honey bees were obtained and simulated: two workers, a drone, a larva, and a queen. The simulations were combined with in-situ measurements of environmental RF-EMF exposure near beehives in Belgium in order to estimate realistic exposure and absorbed power values for honey bees. Our analysis shows that a relatively small shift of 10% of environmental incident power density from frequencies below 3 GHz to higher frequencies will lead to a relative increase in absorbed power of a factor higher than 3
Imaging live bee brains using minimally-invasive diagnostic radioentomology
The sensitivity of the honey bee, Apis mellifera L. (Hymeonoptera: Apidae), brain volume and density to behavior (plasticity) makes it a great model for exploring the interactions between experience, behavior, and brain structure. Plasticity in the adult bee brain has been demonstrated in previous experiments. This experiment was conducted to identify the potentials and limitations of MicroCT (micro computed tomograpy) scanning “live” bees as a more comprehensive, non-invasive method for brain morphology and physiology. Bench-top and synchrotron MicroCT were used to scan live bees. For improved tissue differentiation, bees were fed and injected with radiographic contrast. Images of optic lobes, ocelli, antennal lobes, and mushroom bodies were visualized in 2D and 3D rendering modes. Scanning of live bees (for the first time) enabled minimally-invasive imaging of physiological processes such as passage of contrast from gut to haemolymph, and preliminary brain perfusion studies. The use of microCT scanning for studying insects (collectively termed ‘diagnostic radioentomology’, or DR) is increasing. Our results indicate that it is feasible to observe plasticity of the honey bee brain in vivo using diagnostic radioentomology, and that progressive, real-time observations of these changes can be followed in individual live bees. Limitations of live bee scanning, such as movement errors and poor tissue differentiation, were identified; however, there is great potential for in-vivo, non-invasive diagnostic radioentomology imaging of the honey bee for brain morphology and physiology
Exposure of insects to radio-frequency electromagnetic fields from 2 to 120 GHz
Insects are continually exposed to Radio-Frequency (RF) electromagnetic fields at different frequencies. The range of frequencies used for wireless telecommunication systems will increase in the near future from below 6 GHz (2 G, 3 G, 4 G, and WiFi) to frequencies up to 120 GHz (5 G). This paper is the first to report the absorbed RF electromagnetic power in four different types of insects as a function of frequency from 2 GHz to 120 GHz. A set of insect models was obtained using novel Micro-CT (computer tomography) imaging. These models were used for the first time in finite-difference time-domain electromagnetic simulations. All insects showed a dependence of the absorbed power on the frequency. All insects showed a general increase in absorbed RF power at and above 6 GHz, in comparison to the absorbed RF power below 6 GHz. Our simulations showed that a shift of 10% of the incident power density to frequencies above 6 GHz would lead to an increase in absorbed power between 3-370%
Description of an ancient social bee trapped in amber using diagnostic radioentomology
The application of non-invasive imaging technologies using X-radiation (diagnostic radioentomology, ‘DR’) is demonstrated for the study of amber-entombed social bees. Here, we examine the external and internal morphology of an Early Miocene (Burdigalian) stingless bee (Apinae: Meliponini) from the Dominican Republic using non-destructive X-ray microtomography analysis. The study permits the accurate reconstruction of features otherwise obscured or impossible to visualize without destroying the sample and allows diagnosis of the specimen as a new species, Proplebeia adbita Greco and Engel
No spatial patterns for early nectar storage in honey bee colonies
Honey bees, Apis, forage for nectar and pollen,
which are subsequently stored in cells of their nests. Despite
the importance of honey storage for colony survival, very
little is known about decision making by honey bee workers
that could optimise the transformation of nectar into honey.
Here we test, using diagnostic radioentomology, whether
workers use rules based on sugar concentration to optimise
the spatial distribution of storage cells during nectar ripening.
The data show that after the first 3 days of storing
activity, various sugar concentrations were mixed in individual
cells. A spatial clustering of cells with content of
similar concentration was only occasionally observed. The
results, therefore, suggest that at early stages of storage,
spatial proximity of cells with similar sugar concentrations
does not result in improved efficiency and, therefore, does
not seem adaptive. The costs involved in locating particular
cells probably outweighs the benefits of clustering. Alternatively,
but not mutually exclusive, physiological constraints (e.g. variation in the perception of sugar concentration)
might limit such optimisation behaviour. Storing
behaviour can serve as a model to better understand food
provisioning and complex organisation of insect societies.Partly funded by the Eva Crane Trust.http://link.springer.com/journal/402017-02-28hb2016Zoology and Entomolog
Sugar concentration influences decision making in<em> Apis mellifera</em> L. workers during early-stage honey storage behaviour
Decision making in honeybees is based on in- formation which is acquired and processed in order to make choices between two or more al- ternatives. These choices lead to the expression of optimal behaviour strategies such as floral constancy. Optimal foraging strategies such as floral constancy improve a colony’s chances of survival, however to our knowledge, there has been no research on decision making based on optimal storage strategies. Here we show, using diagnostic radioentomology, that decision mak- ing in storer bees is influenced by nectar sugar concentrations and that, within 48 hours of col- lection, honeybees workers store carbohydrates in groups of cells with similar sugar concentra- tions in a nonrandom way. This behaviour, as evidenced by patchy spatial cell distributions, would help to hasten the ripening process by reducing the distance between cells of similar sugar concentrations. Thus, colonies which ex- hibit optimal storage strategies such as these would have an evolutionary advantage and im- prove colony survival expectations over less efficient colonies and it should be plausible to select colonies that exhibit these preferred traits
The alternative Pharaoh approach: stingless bees mummify beetle parasites alive
Workers from social insect colonies use different defence strategies to combat invaders. Nevertheless, some parasitic species are able to bypass colony defences. In particular, some beetle nest invaders cannot be killed or removed by workers of social bees, thus creating the need for alternative social defence strategies to ensure colony survival. Here we show, using diagnostic radioentomology, that stingless bee workers (Trigona carbonaria) immediately mummify invading adult small hive beetles (Aethina tumida) alive by coating them with a mixture of resin, wax and mud, thereby preventing severe damage to the colony. In sharp contrast to the responses of honeybee and bumblebee colonies, the rapid live mummification strategy of T. carbonaria effectively prevents beetle advancements and removes their ability to reproduce. The convergent evolution of mummification in stingless bees and encapsulation in honeybees is another striking example of co-evolution between insect societies and their parasites
CAMEMBERT: A Mini-Neptunes GCM Intercomparison, Protocol Version 1.0. A CUISINES Model Intercomparison Project
With an increased focus on the observing and modelling of mini-Neptunes,
there comes a need to better understand the tools we use to model their
atmospheres. In this paper, we present the protocol for the CAMEMBERT
(Comparing Atmospheric Models of Extrasolar Mini-neptunes Building and
Envisioning Retrievals and Transits) project, an intercomparison of general
circulation models (GCMs) used by the exoplanetary science community to
simulate the atmospheres of mini-Neptunes. We focus on two targets well studied
both observationally and theoretically with planned JWST Cycle 1 observations:
the warm GJ~1214b and the cooler K2-18b. For each target, we consider a
temperature-forced case, a clear sky dual-grey radiative transfer case, and a
clear sky multi band radiative transfer case, covering a range of complexities
and configurations where we know differences exist between GCMs in the
literature. This paper presents all the details necessary to participate in the
intercomparison, with the intention of presenting the results in future papers.
Currently, there are eight GCMs participating (ExoCAM, Exo-FMS, FMS PCM,
Generic PCM, MITgcm, RM-GCM, THOR, and the UM), and membership in the project
remains open. Those interested in participating are invited to contact the
authors.Comment: Accepted to PS
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.
The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD
- …