18 research outputs found

    Linkage study of 14 candidate genes and loci in four large Dutch families with vesico-ureteral reflux

    Get PDF
    Vesico-ureteral reflux (VUR) is a major contributing factor to end-stage renal disease in paediatric patients. Primary VUR is a familial disorder, but little is known about its genetic causes. To investigate the involvement of 12 functional candidate genes and two reported loci in VUR, we performed a linkage study in four large, Dutch, multi-generational families with multiple affected individuals. We were unable to detect linkage to any of the genes and loci and could exclude the GDNF, RET, SLIT2, SPRY1, PAX2, AGTR2, UPK1A and UPK3A genes and the 1p13 and 20p13 loci from linkage to VUR. Our results provide further evidence that there appears to be genetic heterogeneity in VUR

    Linkage study of 14 candidate genes and loci in four large Dutch families with vesico-ureteral reflux

    Get PDF
    Vesico-ureteral reflux (VUR) is a major contributing factor to end-stage renal disease in paediatric patients. Primary VUR is a familial disorder, but little is known about its genetic causes. To investigate the involvement of 12 functional candidate genes and two reported loci in VUR, we performed a linkage study in four large, Dutch, multi-generational families with multiple affected individuals. We were unable to detect linkage to any of the genes and loci and could exclude the GDNF, RET, SLIT2, SPRY1, PAX2, AGTR2, UPK1A and UPK3A genes and the 1p13 and 20p13 loci from linkage to VUR. Our results provide further evidence that there appears to be genetic heterogeneity in VUR

    Regionalized Development and Maintenance of the Intestinal Adaptive Immune Landscape

    Get PDF
    The intestinal immune system has the daunting task of protecting us from pathogenic insults while limiting inflammatory responses against the resident commensal microbiota and providing tolerance to food antigens. This role is particularly impressive when one considers the vast mucosal surface and changing landscape that the intestinal immune system must monitor. In this review, we highlight regional differences in the development and composition of the adaptive immune landscape of the intestine and the impact of local intrinsic and environmental factors that shape this process. To conclude, we review the evidence for a critical window of opportunity for early-life exposures that affect immune development and alter disease susceptibility later in life

    Host interactions with segmented filamentous bacteria: an unusual trade-off that drives the post-natal maturation of the gut immune system

    No full text
    Segmented Filamentous Bacteria (SFB) are present in the gut microbiota of a large number of vertebrate species where they are found intimately attached to the intestinal epithelium. SFB has recently attracted considerable attention due to its outstanding capacity to stimulate innate and adaptive host immune responses without causing pathology. Recent genomic analysis placed SFB between obligate and facultative symbionts, unraveled its highly auxotrophic needs, and provided a rationale for the complex SFB life-style in close contact with the epithelium. Herein, we examine how the SFB life-style may underlie its potent immunostimulatory properties and discuss how the trade-offset up between SFB and its hosts can simultaneously help to establish and maintain the ecological niche of SFB in the intestine and drive the post-natal maturation of the host gut immune barrier
    corecore