35 research outputs found

    Tractography in the presence of multiple sclerosis lesions

    Get PDF
    Accurate anatomical localisation of specific white matter tracts and the quantification of their tract-specific microstructural damage in conditions such as multiple sclerosis (MS) can contribute to a better understanding of symptomatology, disease evolution and intervention effects. Diffusion MRI-based tractography is being used increasingly to segment white matter tracts as regions-of-interest for subsequent quantitative analysis. Since MS lesions can interrupt the tractography algorithm’s tract reconstruction, clinical studies frequently resort to atlas-based approaches, which are convenient but ignorant to individual variability in tract size and shape. Here, we revisit the problem of individual tractography in MS, comparing tractography algorithms using: (i) The diffusion tensor framework; (ii) constrained spherical deconvolution (CSD); and (iii) damped Richardson-Lucy (dRL) deconvolution. Firstly, using simulated and in vivo data from 29 MS patients and 19 healthy controls, we show that the three tracking algorithms respond differentially to MS pathology. While the tensor-based approach is unable to deal with crossing fibres, CSD produces spurious streamlines, in particular in tissue with high fibre loss and low diffusion anisotropy. With dRL, streamlines are increasingly interrupted in pathological tissue. Secondly, we demonstrate that despite the effects of lesions on the fibre orientation reconstruction algorithms, fibre tracking algorithms are still able to segment tracts that pass through areas with a high prevalence of lesions. Combining dRL-based tractography with an automated tract segmentation tool on data from 131 MS patients, the cortico-spinal tracts and arcuate fasciculi could be reconstructed in more than 90% of individuals. Comparing tract-specific microstructural parameters (fractional anisotropy, radial diffusivity and magnetisation transfer ratio) in individually segmented tracts to those from a tract probability map, we show that there is no systematic disease-related bias in the individually reconstructed tracts, suggesting that lesions and otherwise damaged parts are not systematically omitted during tractography. Thirdly, we demonstrate modest anatomical correspondence between the individual and tract probability-based approach, with a spatial overlap between 35 and 55%. Correlations between tract-averaged microstructural parameters in individually segmented tracts and the probability-map approach ranged between r=.53 ( p<.001 ) for radial diffusivity in the right cortico-spinal tract and r=.97 ( p<.001 ) for magnetisation transfer ratio in the arcuate fasciculi. Our results show that MS white matter lesions impact fibre orientation reconstructions but this does not appear to hinder the ability to anatomically reconstruct white matter tracts in MS. Individual tract segmentation in MS is feasible on a large scale and could prove a powerful tool for investigating diagnostic and prognostic markers

    LI-Detector:a Method for Curating Ordered Gene-Replacement Libraries

    Get PDF
    In recent years the availability of genome sequence information has grown logarithmically resulting in the identification of a plethora of uncharacterized genes. To address this gap in functional annotation, many high-throughput screens have been devised to uncover novel gene functions. Gene-replacement libraries are one such tool that can be screened in a high-throughput way to link genotype and phenotype and are key community resources. However, for a phenotype to be attributed to a specific gene, there needs to be confidence in the genotype. Construction of large libraries can be laborious and occasionally errors will arise. Here, we present a rapid and accurate method for the validation of any ordered library where a gene has been replaced or disrupted by a uniform linear insertion (LI). We applied our method (LI-detector) to the well-known Keio library of Escherichia coli gene-deletion mutants. Our method identified 3,718 constructed mutants out of a total of 3,728 confirmed isolates, with a success rate of 99.7% for identifying the correct kanamycin cassette position. This data set provides a benchmark for the purity of the Keio mutants and a screening method for mapping the position of any linear insertion, such as an antibiotic resistance cassette in any ordered library. IMPORTANCE The construction of ordered gene replacement libraries requires significant investment of time and resources to create a valuable community resource. During construction, technical errors may result in a limited number of incorrect mutants being made. Such mutants may confound the output of subsequent experiments. Here, using the remarkable E. coli Keio knockout library, we describe a method to rapidly validate the construction of every mutant.</p

    Transcranial magnetic stimulation in sport science: a commentary

    Get PDF
    The aim of this commentary is to provide a brief overview of transcranial magnetic stimulation (TMS) and highlight how this technique can be used to investigate the acute and chronic responses of the central nervous system to exercise. We characterise the neuromuscular responses to TMS and discuss how these measures can be used to investigate the mechanisms of fatigue in response to locomotor exercise. We also discuss how TMS might be used to study the corticospinal adaptations to resistance exercise training, with particular emphasis on the responses to shortening/lengthening contractions and contralateral training. The limited data to date suggest that TMS is a valuable technique for exploring the mechanisms of central fatigue and neural adaptation

    Vitamin D Supplementation to Prevent Acute Respiratory Tract Infections: Systematic Review and Meta-Analysis Of Individual Participant Data

    Get PDF
    OBJECTIVES To assess the overall effect of vitamin D supplementation on risk of acute respiratory tract infection, and to identify factors modifying this effect. DESIGN Systematic review and meta-analysis of individual participant data (IPD) from randomised controlled trials. DATA SOURCES Medline, Embase, the Cochrane Central Register of Controlled Trials, Web of Science, ClinicalTrials.gov, and the International Standard Randomised Controlled Trials Number registry from inception to December 2015. ELIGIBILITY CRITERIA FOR STUDY SELECTION Randomised, double blind, placebo controlled trials of supplementation with vitamin D3 or vitamin D2 of any duration were eligible for inclusion if they had been approved by a research ethics committee and if data on incidence of acute respiratory tract infection were collected prospectively and prespecified as an efficacy outcome. RESULTS 25 eligible randomised controlled trials (total 11 321 participants, aged 0 to 95 years) were identified. IPD were obtained for 10 933 (96.6%) participants. Vitamin D supplementation reduced the risk of acute respiratory tract infection among all participants (adjusted odds ratio 0.88, 95% confidence interval 0.81 to 0.96; P for heterogeneity \u3c0.001). In subgroup analysis, protective effects were seen in those receiving daily or weekly vitamin D without additional bolus doses (adjusted odds ratio 0.81, 0.72 to 0.91) but not in those receiving one or more bolus doses (adjusted odds ratio 0.97, 0.86 to 1.10; P for interaction=0.05). Among those receiving daily or weekly vitamin D, protective effects were stronger in those with baseline 25-hydroxyvitamin D levels \u3c25 nmol/L (adjusted odds ratio 0.30, 0.17 to 0.53) than in those with baseline 25-hydroxyvitamin D levels ≥25 nmol/L (adjusted odds ratio 0.75, 0.60 to 0.95; P for interaction=0.006). Vitamin D did not influence the proportion of participants experiencing at least one serious adverse event (adjusted odds ratio 0.98, 0.80 to 1.20, P=0.83). The body of evidence contributing to these analyses was assessed as being of high quality. CONCLUSIONS Vitamin D supplementation was safe and it protected against acute respiratory tract infection overall. Patients who were very vitamin D deficient and those not receiving bolus doses experienced the most benefit

    The assessment of neuromuscular fatigue during 120 min of simulated soccer exercise

    Get PDF
    Purpose This investigation examined the development of neuromuscular fatigue during a simulated soccer match incorporating a period of extra time (ET) and the reliability of these responses on repeated test occasions. Methods Ten male amateur football players completed a 120 min soccer match simulation (SMS). Before, at half time (HT), full time (FT), and following a period of ET, twitch responses to supramaximal femoral nerve and transcranial magnetic stimulation (TMS) were obtained from the knee-extensors to measure neuromuscular fatigue. Within 7 days of the first SMS, a second 120 min SMS was performed by eight of the original ten participants to assess the reliability of the fatigue response. Results At HT, FT, and ET, reductions in maximal voluntary force (MVC; −11, −20 and −27%, respectively, P ≤ 0.01), potentiated twitch force (−15, −23 and −23%, respectively, P < 0.05), voluntary activation (FT, −15 and ET, −18%, P ≤ 0.01), and voluntary activation measured with TMS (−11, −15 and −17%, respectively, P ≤ 0.01) were evident. The fatigue response was robust across both trials; the change in MVC at each time point demonstrated a good level of reliability (CV range 6–11%; ICC2,1 0.83–0.94), whilst the responses identified with motor nerve stimulation showed a moderate level of reliability (CV range 5–18%; ICC2,1 0.63–0.89) and the data obtained with motor cortex stimulation showed an excellent level of reliability (CV range 3–6%; ICC2,1 0.90–0.98). Conclusion Simulated soccer exercise induces a significant level of fatigue, which is consistent on repeat tests, and involves both central and peripheral mechanisms

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p

    Creating Inclusive Classrooms for Highly Dysregulated Students: What Can We Learn from Existing Literature?

    Get PDF
    The ability to self-regulate is a key focus for educators, especially for neurodivergent students, such as those with ADHD, fetal alcohol syndrome, mental health difficulties, autism, and/or anxiety. Students not being able to self-regulate frequently results in their behaviours being labelled as 'naughty' or 'challenging' by teachers. Continued dysregulation can lead to periods of suspension and exclusion, impacting both attendance rates for students and their broader families. Previous research has shown that the impacts of poor self-regulation can be wide-ranging, spanning both social and academic outcomes. The broad negative impact of poor self-regulation means that it is important to support families and classroom teachers to effectively improve children’s self-regulation. However, to support families and educators, there is a need to develop and deploy a theoretical framework to suggest why self-regulation may be under-developed and, conversely, how self-regulation may be effectively developed across a wide range of contexts. This paper considers current literature exploring the links between individual experiences of emotions and connections with core abilities of interoception, self-regulation, emotional intelligence, and metacognition. It outlines a hypothesised model of how these abilities intertwine and how supporting core building blocks within educational settings can enable supportive and inclusive educational contexts, providing positive experiences for students and teachers alike
    corecore