16 research outputs found

    Kinematics of a relativistic particle with de Sitter momentum space

    Full text link
    We discuss kinematical properties of a free relativistic particle with deformed phase space in which momentum space is given by (a submanifold of) de Sitter space. We provide a detailed derivation of the action, Hamiltonian structure and equations of motion for such free particle. We study the action of deformed relativistic symmetries on the phase space and derive explicit formulas for the action of the deformed Poincare' group. Finally we provide a discussion on parametrization of the particle worldlines stressing analogies and differences with ordinary relativistic kinematics.Comment: RevTeX, 12 pages, no figure

    Realizations of the Lie superalgebra q(2) and applications

    Full text link
    The Lie superalgebra q(2) and its class of irreducible representations V_p of dimension 2p (p being a positive integer) are considered. The action of the q(2) generators on a basis of V_p is given explicitly, and from here two realizations of q(2) are determined. The q(2) generators are realized as differential operators in one variable x, and the basis vectors of V_p as 2-arrays of polynomials in x. Following such realizations, it is observed that the Hamiltonian of certain physical models can be written in terms of the q(2) generators. In particular, the models given here as an example are the sphaleron model, the Moszkowski model and the Jaynes-Cummings model. For each of these, it is shown how the q(2) realization of the Hamiltonian is helpful in determining the spectrum.Comment: LaTeX file, 15 pages. (further references added, minor changes in section 5

    Physics of B_c mesons

    Get PDF
    In the framework of potential models for heavy quarkonium the mass spectrum for the system (bˉc\bar b c) is considered. Spin-dependent splittings, taking into account a change of a constant for effective coulomb interaction between the quarks, and widths of radiative transitions between the (bˉc\bar b c) levels are calculated. In the framework of QCD sum rules, masses of the lightest vector BcB_c^* and pseudoscalar BcB_c states are estimated, scaling relation for leptonic constants of heavy quarkonia is derived, and the leptonic constant fBcf_{B_c} is evaluated. The BcB_c decays are considered in the framework of both the potential models and the QCD sum rules, where the significance of Coulomb-like corrections is shown. The relations, following from the approximate spin symmetry for the heavy quarks in the heavy quarkonium, are analysed for the form factors of the semileptonic weak exclusive decays of BcB_c. The BcB_c lifetime is evaluated with the account of the corrections to the spectator mechanism of the decay, because of the quark binding into the meson. The total and differential cross sections of the BcB_c production in different interactions are calculated. The analytic expressions for the fragmentational production cross sections of BcB_c are derived. The possibility of the practical BcB_c search in the current and future experiments at electron-positron and hadron colliders is analysed.Comment: 81 page, latex, ihep.sty is required and attached in the end of the file after \end{document}, figures are not availabl

    Search for heavy long-lived charged R-hadrons with the ATLAS detector in 3.2 fb(-1) of proton-proton collision data at root s=13 TeV

    Get PDF
    A search for heavy long-lived charged R-hadrons is reported using a data sample corresponding to 3.2 fb−1 of proton–proton collisions at √s = 13 TeV collected by the ATLAS experiment at the Large Hadron Collider at CERN. The search is based on observables related to large ionisation losses and slow propagation velocities, which are signatures of heavy charged particles travelling significantly slower than the speed of light. No significant deviations from the expected background are observed. Upper limits at 95% confidence level are provided on the production cross section of long-lived R-hadrons in the mass range from 600 GeV to 2000 GeV and gluino, bottom and top squark masses are excluded up to 1580 GeV, 805 GeV and 890 GeV, respectively

    Topological mechanics from supersymmetry

    No full text
    corecore