56 research outputs found

    Lattice Boltzmann Models with Mid-Range Interactions \ud \ud

    Get PDF
    An extension of the standard Shan-Chen model for non ideal-fluids, catering for mid-range, soft-core and hard-core repulsion, is investigated. It is shown that the inclusion of such mid-range interactions does not yield any visible enhancement of the density jump across the dense and light phases. Such an enhancement can however be obtained by tuning the exponents of the effective interaction. The results also indicate that the inclusion of soft-core repulsion can prevent the coalescence of neighborhood bubbles, thereby opening the possibility of tailoring the size of multi-droplet configurations, such as sprays and related phase-separating fluids. \ud \u

    fabrication and characterization of an innovative heat exchanger with open cell aluminum foams

    Get PDF
    Abstract: The present study deals with the design, the fabrication and the characterization of an innovative heat exchanger manufactured by using open cell aluminum foams. The cooling performances of the heat exchanger, working in low temperature difference were measured. Open cells aluminum foams, produced via polymeric foam replication method, have been assembled to manufacture the cooling elements. The wettability of the aluminum foam surface was improved through a surface treatment, in order to enhance the joining between the pipes and the metal foam. In a first phase, preliminary experimental tests on aluminum metal foam samples were used for an estimation of the overall cooling performance. The experimental test was also aimed to understand the basic mechanisms involved in the heat transfer process. In a second phase, the full heat exchanger was assembled, and an experimental setup was designed in order to determine the performance of the heat exchanger. The heat exchanger revealed its high potentiality in terms of thermal performance, showing also a remarkable behavior in terms of energy saving, assembly and endurance

    Preliminary design of a fuel cell/battery hybrid powertrain for a heavy-duty yard truck for port logistics

    Get PDF
    Abstract The maritime transport and the port-logistic industry are key drivers of economic growth, although, they represent major contributors to climate change. In particular, maritime port facilities are typically located near cities or residential areas, thus having a significant direct environmental impact, in terms of air and water quality, as well as noise. The majority of the pollutant emissions in ports comes from cargo ships, and from all the related ports activities carried out by road vehicles. Therefore, a progressive reduction of the use of fossil fuels as a primary energy source for these vehicles and the promotion of cleaner powertrain alternatives is in order. The present study deals with the design of a new propulsion system for a heavy-duty vehicle for port applications. Specifically, this work aims at laying the foundations for the development of a benchmark industrial cargo–handling hydrogen-fueled vehicle to be used in real port operations. To this purpose, an on-field measurement campaign has been conducted to analyze the duty cycle of a commercial Diesel-engine yard truck currently used for terminal ports operations. The vehicle dynamics has been numerically modeled and validated against the acquired data, and the energy and power requirements for a plug-in fuel cell/battery hybrid powertrain replacing the Diesel powertrain on the same vehicle have been evaluated. Finally, a preliminary design of the new powertrain and a rule-based energy management strategy have been proposed, and the electric energy and hydrogen consumptions required to achieve the target driving range for roll-on and roll-off operations have been estimated. The results are promising, showing that the hybrid electric vehicle is capable of achieving excellent energy performances, by means of an efficient use of the fuel cell. An overall amount of roughly 12 kg of hydrogen is estimated to be required to accomplish the most demanding port operation, and meet the target of 6 h of continuous operation. Also, the vehicle powertrain ensures an adequate all-electric range, which is between approximately 1 and 2 h depending on the specific port operation. Potentially, the hydrogen-fueled yard truck is expected to lead to several benefits, such as local zero emissions, powertrain noise elimination, reduction of the vehicle maintenance costs, improving of the energy management, and increasing of operational efficiency

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    corecore