5,059 research outputs found

    Effect of atomic layer deposition on the quality factor of silicon nanobeam cavities

    Get PDF
    In this work we study the effect of thin-film deposition on the quality factor (Q) of silicon nanobeam cavities. We observe an average increase in the Q of 38±31% in one sample and investigate the dependence of this increase on the initial nanobeam hole sizes. We note that this process can be used to modify cavities that have larger than optimal hole sizes following fabrication. Additionally, the technique allows the tuning of the cavity mode wavelength and the incorporation of new materials, without significantly degrading Q

    Increased Excitability Induced in the Primary Motor Cortex by Transcranial Ultrasound Stimulation

    Full text link
    Background: Transcranial Ultrasound Stimulation (tUS) is an emerging technique that uses ultrasonic waves to noninvasively modulate brain activity. As with other forms of non-invasive brain stimulation (NIBS), tUS may be useful for altering cortical excitability and neuroplasticity for a variety of research and clinical applications. The effects of tUS on cortical excitability are still unclear, and further complications arise from the wide parameter space offered by various types of devices, transducer arrangements, and stimulation protocols. Diagnostic ultrasound imaging devices are safe, commonly available systems that may be useful for tUS. However, the feasibility of modifying brain activity with diagnostic tUS is currently unknown. Objective: We aimed to examine the effects of a commercial diagnostic tUS device using an imaging protocol on cortical excitability. We hypothesized that imaging tUS applied to motor cortex could induce changes in cortical excitability as measured using a transcranial magnetic stimulation (TMS) motor evoked potential (MEP) paradigm. Methods: Forty-three subjects were assigned to receive either verum (n = 21) or sham (n = 22) diagnostic tUS in a single-blind design. Baseline motor cortex excitability was measured using MEPs elicited by TMS. Diagnostic tUS was subsequently administered to the same cortical area for 2 min, immediately followed by repeated post-stimulation MEPs recorded up to 16 min post-stimulation. Results: Verum tUS increased excitability in the motor cortex (from baseline) by 33.7% immediately following tUS (p = 0.009), and 32.4% (p = 0.047) 6 min later, with excitability no longer significantly different from baseline by 11 min post-stimulation. By contrast, subjects receiving sham tUS showed no significant changes in MEP amplitude. Conclusion: These findings demonstrate that tUS delivered via a commercially available diagnostic imaging ultrasound system transiently increases excitability in the motor cortex as measured by MEPs. Diagnostic tUS devices are currently used for internal imaging in many health care settings, and the present results suggest that these same devices may also offer a promising tool for noninvasively modulating activity in the central nervous system. Further studies exploring the use of diagnostic imaging devices for neuromodulation are warranted

    Increased Excitability Induced in the Primary Motor Cortex by Transcranial Ultrasound Stimulation

    Full text link
    Background: Transcranial Ultrasound Stimulation (tUS) is an emerging technique that uses ultrasonic waves to noninvasively modulate brain activity. As with other forms of non-invasive brain stimulation (NIBS), tUS may be useful for altering cortical excitability and neuroplasticity for a variety of research and clinical applications. The effects of tUS on cortical excitability are still unclear, and further complications arise from the wide parameter space offered by various types of devices, transducer arrangements, and stimulation protocols. Diagnostic ultrasound imaging devices are safe, commonly available systems that may be useful for tUS. However, the feasibility of modifying brain activity with diagnostic tUS is currently unknown. Objective: We aimed to examine the effects of a commercial diagnostic tUS device using an imaging protocol on cortical excitability. We hypothesized that imaging tUS applied to motor cortex could induce changes in cortical excitability as measured using a transcranial magnetic stimulation (TMS) motor evoked potential (MEP) paradigm. Methods: Forty-three subjects were assigned to receive either verum (n = 21) or sham (n = 22) diagnostic tUS in a single-blind design. Baseline motor cortex excitability was measured using MEPs elicited by TMS. Diagnostic tUS was subsequently administered to the same cortical area for 2 min, immediately followed by repeated post-stimulation MEPs recorded up to 16 min post-stimulation. Results: Verum tUS increased excitability in the motor cortex (from baseline) by 33.7% immediately following tUS (p = 0.009), and 32.4% (p = 0.047) 6 min later, with excitability no longer significantly different from baseline by 11 min post-stimulation. By contrast, subjects receiving sham tUS showed no significant changes in MEP amplitude. Conclusion: These findings demonstrate that tUS delivered via a commercially available diagnostic imaging ultrasound system transiently increases excitability in the motor cortex as measured by MEPs. Diagnostic tUS devices are currently used for internal imaging in many health care settings, and the present results suggest that these same devices may also offer a promising tool for noninvasively modulating activity in the central nervous system. Further studies exploring the use of diagnostic imaging devices for neuromodulation are warranted

    The properties of the local spiral arms from RAVE data: two-dimensional density wave approach

    Get PDF
    Using the RAVE survey, we recently brought to light a gradient in the mean galactocentric radial velocity of stars in the extended solar neighbourhood. This gradient likely originates from non-axisymmetric perturbations of the potential, among which a perturbation by spiral arms is a possible explanation. Here, we apply the traditional density wave theory and analytically model the radial component of the two-dimensional velocity field. Provided that the radial velocity gradient is caused by relatively long-lived spiral arms that can affect stars substantially above the plane, this analytic model provides new independent estimates for the parameters of the Milky Way spiral structure. Our analysis favours a two-armed perturbation with the Sun close to the inner ultra-harmonic 4:1 resonance, with a pattern speed \Omega_p=18.6^{+0.3}_{-0.2} km/s/kpc and a small amplitude A=0.55 \pm 0.02% of the background potential (14% of the background density). This model can serve as a basis for numerical simulations in three dimensions, additionally including a possible influence of the galactic bar and/or other non-axisymmetric modes.Comment: 9 pages, 4 figures, accepted for publication in MNRA

    The Baryon Oscillation Spectroscopic Survey of SDSS-III

    Get PDF
    The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7. Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000 quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Lyman alpha forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance D_A to an accuracy of 1.0% at redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyman alpha forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.Comment: 49 pages, 16 figures, accepted by A

    Search for the Higgs boson in events with missing transverse energy and b quark jets produced in proton-antiproton collisions at s**(1/2)=1.96 TeV

    Get PDF
    We search for the standard model Higgs boson produced in association with an electroweak vector boson in events with no identified charged leptons, large imbalance in transverse momentum, and two jets where at least one contains a secondary vertex consistent with the decay of b hadrons. We use ~1 fb-1 integrated luminosity of proton-antiproton collisions at s**(1/2)=1.96 TeV recorded by the CDF II experiment at the Tevatron. We find 268 (16) single (double) b-tagged candidate events, where 248 +/- 43 (14.4 +/- 2.7) are expected from standard model background processes. We place 95% confidence level upper limits on the Higgs boson production cross section for several Higgs boson masses ranging from 110 GeV/c2 to 140 GeV/c2. For a mass of 115 GeV/c2 the observed (expected) limit is 20.4 (14.2) times the standard model prediction.Comment: 8 pages, 2 figures, submitted to Phys. Rev. Let

    Measurement of the Helicity Fractions of W Bosons from Top Quark Decays Using Fully Reconstructed top-antitop Events with CDF II

    Get PDF
    We present a measurement of the fractions F_0 and F_+ of longitudinally polarized and right-handed W bosons in top quark decays using data collected with the CDF II detector. The data set used in the analysis corresponds to an integrated luminosity of approximately 318 pb -1. We select ttbar candidate events with one lepton, at least four jets, and missing transverse energy. Our helicity measurement uses the decay angle theta*, which is defined as the angle between the momentum of the charged lepton in the W boson rest frame and the W momentum in the top quark rest frame. The cos(theta*) distribution in the data is determined by full kinematic reconstruction of the ttbar candidates. We find F_0 = 0.85 +0.15 -0.22 (stat) +- 0.06 (syst) and F_+ = 0.05 +0.11 -0.05 (stat) +- 0.03 (syst), which is consistent with the standard model prediction. We set an upper limit on the fraction of right-handed W bosons of F_+ < 0.26 at the 95% confidence level.Comment: 11 pages, 2 figures, submitted to Phys. Rev.

    Measurement of the Lifetime Difference Between B_s Mass Eigenstates

    Get PDF
    We present measurements of the lifetimes and polarization amplitudes for B_s --> J/psi phi and B_d --> J/psi K*0 decays. Lifetimes of the heavy (H) and light (L) mass eigenstates in the B_s system are separately measured for the first time by determining the relative contributions of amplitudes with definite CP as a function of the decay time. Using 203 +/- 15 B_s decays, we obtain tau_L = (1.05 +{0.16}/-{0.13} +/- 0.02) ps and tau_H = (2.07 +{0.58}/-{0.46} +/- 0.03) ps. Expressed in terms of the difference DeltaGamma_s and average Gamma_s, of the decay rates of the two eigenstates, the results are DeltaGamma_s/Gamma_s = (65 +{25}/-{33} +/- 1)%, and DeltaGamma_s = (0.47 +{0.19}/-{0.24} +/- 0.01) inverse ps.Comment: 8 pages, 3 figures, 2 tables; as published in Physical Review Letters on 16 March 2005; revisions are for length and typesetting only, no changes in results or conclusion
    corecore