30 research outputs found

    Nitrogen dynamics in a small arctic watershed: retention and downhill movement of 15N

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Monographs 80 (2010): 331-351, doi:10.1890/08-0773.1.We examined short- and long-term nitrogen (N) dynamics and availability along an arctic hillslope in Alaska, USA, using stable isotope of nitrogen (15N), as a tracer. Tracer levels of 15NH4+ were sprayed once onto the tundra at six sites in four tundra types; heath (crest), tussock with high and low water flux (mid- and foot-slope), and wet sedge (riparian). 15N in vegetation and soil was monitored to estimate retention and loss over a 3-yr period. Nearly all 15NH4+ was immediately retained in the surface moss-detritus-plant layer and > 57 % of the 15N added remained in this layer at the end of the second year. Organic soil was the second largest 15N sink. By the end of the third growing season, the moss-detritus-plant layer and organic soil combined retained ≥ 87 % of the 15N added except at the mid-slope site with high water flux, where recovery declined to 68 %. At all sites, non-extractable and non-labile-N pools were the principal sinks for added 15N in the organic soil. Hydrology played an important role in downslope movement of dissolved 15N. Crest and mid-slope with high water flux sites were most susceptible to 15N losses via leaching perhaps because of deep permeable mineral soil (crest) and high water flow (mid-slope with high water flux). Late spring melt-season also resulted in downslope dissolved-15N losses, perhaps because of an asynchrony between N release into melt water and soil immobilization capacity. We conclude that separation of the rooting zone from the strong sink for incoming N in the moss detritus-plant layer, rapid incorporation of new N into relatively recalcitrant soil-N pools within the rooting zone, and leaching loss from the upper hillslope would all contribute to the strong N limitation of this ecosystem. An extended snow-free season and deeper depth of thaw under warmer climate may significantly alter current N dynamics in this arctic ecosystem.Funding was provided by NSF grant #0444592. Additional support was provided by Toolik Field Station Long Term Ecological Research program, funded by National Science Foundation, Office of Polar Programs

    Strong detection of the CMB lensingxgalaxy weak lensingcross-correlation from ACT-DR4,PlanckLegacy and KiDS-1000

    Full text link
    We measure the cross-correlation between galaxy weak lensing data from the Kilo Degree Survey (KiDS-1000, DR4) and cosmic microwave background (CMB) lensing data from the Atacama Cosmology Telescope (ACT, DR4) and the Planck Legacy survey. We use two samples of source galaxies, selected with photometric redshifts, (0.1<zB<1.2)(0.1<z_{\rm B}<1.2) and (1.2<zB<2)(1.2<z_{\rm B}<2), which produce a combined detection significance of the CMB lensing/weak galaxy lensing cross-spectrum of 7.7σ7.7\sigma. With the lower redshift galaxy sample, for which the cross-correlation is detected at a significance of 5.3σ5.3\sigma, we present joint cosmological constraints on the matter density parameter, Ωm\Omega_{\rm m}, and the matter fluctuation amplitude parameter, σ8\sigma_8, marginalising over three nuisance parameters that model our uncertainty in the redshift and shear calibration, and the intrinsic alignment of galaxies. We find our measurement to be consistent with the best-fitting flat Λ\LambdaCDM cosmological models from both Planck and KiDS-1000. We demonstrate the capacity of CMB-weak lensing cross-correlations to set constraints on either the redshift or shear calibration, by analysing a previously unused high-redshift KiDS galaxy sample (1.2<zB<2)(1.2<z_{\rm B}<2), with the cross-correlation detected at a significance of 7σ7\sigma. This analysis provides an independent assessment for the accuracy of redshift measurements in a regime that is challenging to calibrate directly owing to known incompleteness in spectroscopic surveys.Comment: 13 pages, 9 figures, 1 tables, submitted to A&

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Increasing frailty is associated with higher prevalence and reduced recognition of delirium in older hospitalised inpatients: results of a multi-centre study

    Get PDF
    Purpose: Delirium is a neuropsychiatric disorder delineated by an acute change in cognition, attention, and consciousness. It is common, particularly in older adults, but poorly recognised. Frailty is the accumulation of deficits conferring an increased risk of adverse outcomes. We set out to determine how severity of frailty, as measured using the CFS, affected delirium rates, and recognition in hospitalised older people in the United Kingdom. Methods: Adults over 65 years were included in an observational multi-centre audit across UK hospitals, two prospective rounds, and one retrospective note review. Clinical Frailty Scale (CFS), delirium status, and 30-day outcomes were recorded. Results: The overall prevalence of delirium was 16.3% (483). Patients with delirium were more frail than patients without delirium (median CFS 6 vs 4). The risk of delirium was greater with increasing frailty [OR 2.9 (1.8–4.6) in CFS 4 vs 1–3; OR 12.4 (6.2–24.5) in CFS 8 vs 1–3]. Higher CFS was associated with reduced recognition of delirium (OR of 0.7 (0.3–1.9) in CFS 4 compared to 0.2 (0.1–0.7) in CFS 8). These risks were both independent of age and dementia. Conclusion: We have demonstrated an incremental increase in risk of delirium with increasing frailty. This has important clinical implications, suggesting that frailty may provide a more nuanced measure of vulnerability to delirium and poor outcomes. However, the most frail patients are least likely to have their delirium diagnosed and there is a significant lack of research into the underlying pathophysiology of both of these common geriatric syndromes

    Radio-Frequency Manipulation of State Populations in an Entangled Fluorine-Muon-Fluorine System

    Get PDF
    Entangled spin states are created by implanting muons into single-crystal LiY0.95Ho0.05F4 to form a cluster of correlated, dipole-coupled local magnetic moments. The resulting states have well-defined energy levels allowing experimental manipulation of the state populations by electromagnetic excitation. Experimental control of the evolution of the muon spin polarization is demonstrated through application of continuous, radio-frequency electromagnetic excitation fields. A semiclassical model of quantum, dipole-coupled spins interacting with a classical, oscillating magnetic field accounts for the muon spin evolution. On application of the excitation field, this model shows how changes in the state populations lead to the experimentally observed effects, thus enabling a spectroscopic probe of entangled spin states with muons

    Nitrate is an important nitrogen source for Arctic tundra plants

    Get PDF
    Plant nitrogen (N) use is a key component of the N cycle in terrestrial ecosystems. The supply of N to plants affects community species composition and ecosystem processes such as photosynthesis and carbon (C) accumulation. However, the availabilities and relative importance of different N forms to plants are not well understood. While nitrate (NO3−) is a major N form used by plants worldwide, it is discounted as a N source for Arctic tundra plants because of extremely low NO3− concentrations in Arctic tundra soils, undetectable soil nitrification, and plant-tissue NO3− that is typically below detection limits. Here we reexamine NO3− use by tundra plants using a sensitive denitrifier method to analyze plant-tissue NO3−. Soil-derived NO3− was detected in tundra plant tissues, and tundra plants took up soil NO3− at comparable rates to plants from relatively NO3−-rich ecosystems in other biomes. Nitrate assimilation determined by 15N enrichments of leaf NO3− relative to soil NO3− accounted for 4 to 52% (as estimated by a Bayesian isotope-mixing model) of species-specific total leaf N of Alaskan tundra plants. Our finding that in situ soil NO3− availability for tundra plants is high has important implications for Arctic ecosystems, not only in determining species compositions, but also in determining the loss of N from soils via leaching and denitrification. Plant N uptake and soil N losses can strongly influence C uptake and accumulation in tundra soils. Accordingly, this evidence of NO3− availability in tundra soils is crucial for predicting C storage in tundra

    ACT-DR5 Sunyaev-Zel'dovich Clusters: weak lensing mass calibration with KiDS

    No full text
    International audienceWe present weak gravitational lensing measurements of a sample of 157 clusters within the Kilo Degree Survey (KiDS), detected with a >5σ>5\sigma thermal Sunyaev-Zel'dovich (SZ) signal by the Atacama Cosmology Telescope (ACT). Using a halo-model approach we constrain the average total cluster mass, MWLM_{\rm WL}, accounting for the ACT cluster selection function of the full sample. We find that the SZ cluster mass estimate MSZM_{\rm SZ}, which was calibrated using X-ray observations, is biased with MSZ/MWL=(1bSZ)=0.65±0.05M_{\rm SZ}/M_{\rm WL} = (1-b_{\rm SZ}) = 0.65\pm 0.05. Separating the sample into six mass bins, we find no evidence of a strong mass-dependency for the mass bias, (1bSZ)(1-b_{\rm SZ}). Adopting this ACT-KiDS SZ mass-calibration would bring the Planck SZ cluster count into agreement with the counts expected from the {\it Planck} cosmic microwave background Λ\LambdaCDM cosmological model, although it should be noted that the cluster sample considered in this work has a lower average mass MSZ,uncor=3.64×1014MM_{\rm SZ, uncor} = 3.64 \times 10^{14} M_{\odot} compared to the Planck cluster sample which has an average mass in the range MSZ,uncor=(5.58.5)×1014MM_{\rm SZ, uncor} = (5.5-8.5) \times 10^{14} M_{\odot}, depending on the sub-sample used
    corecore