626 research outputs found

    Gene tree reconciliation: new developments in Bayesian concordance analysis with BUCKy

    Get PDF
    When phylogenetic trees inferred from different genes are incongruent, several methods are available to reconcile gene trees and extract the shared phylogenetic information from the sequence data. Bayesian Concordance Analysis, implemented in BUCKy, aims to extract the vertical signal and to infer clusters of genes that share the same tree topology. The new version of BUCKy includes a quartet-based estimate of the species tree with branch lengths in coalescent units

    A Variable Metric Probabilistic k-Nearest-Neighbours Classifier

    Get PDF
    Copyright © 2004 Springer Verlag. The final publication is available at link.springer.com5th International Conference, Exeter, UK. August 25-27, 2004. ProceedingsBook title: Intelligent Data Engineering and Automated Learning – IDEAL 2004k-nearest neighbour (k-nn) model is a simple, popular classifier. Probabilistic k-nn is a more powerful variant in which the model is cast in a Bayesian framework using (reversible jump) Markov chain Monte Carlo methods to average out the uncertainy over the model parameters.The k-nn classifier depends crucially on the metric used to determine distances between data points. However, scalings between features, and indeed whether some subset of features is redundant, are seldom known a priori. Here we introduce a variable metric extension to the probabilistic k-nn classifier, which permits averaging over all rotations and scalings of the data. In addition, the method permits automatic rejection of irrelevant features. Examples are provided on synthetic data, illustrating how the method can deform feature space and select salient features, and also on real-world data

    Ecosystem respiration: Drivers of daily variability and background respiration in lakes around the globe

    Get PDF
    We assembled data from a global network of automated lake observatories to test hypotheses regarding the drivers of ecosystem metabolism. We estimated daily rates of respiration and gross primary production (GPP) for up to a full year in each lake, via maximum likelihood fits of a free‐water metabolism model to continuous high‐frequency measurements of dissolved oxygen concentrations. Uncertainties were determined by a bootstrap analysis, allowing lake‐days with poorly constrained rate estimates to be down‐weighted in subsequent analyses. GPP and respiration varied considerably among lakes and at seasonal and daily timescales. Mean annual GPP and respiration ranged from 0.1 to 5.0 mg O2 L−1 d−1 and were positively related to total phosphorus but not dissolved organic carbon concentration. Within lakes, significant day‐to‐day differences in respiration were common despite large uncertainties in estimated rates on some lake‐days. Daily variation in GPP explained 5% to 85% of the daily variation in respiration after temperature correction. Respiration was tightly coupled to GPP at a daily scale in oligotrophic and dystrophic lakes, and more weakly coupled in mesotrophic and eutrophic lakes. Background respiration ranged from 0.017 to 2.1 mg O2 L−1 d−1 and was positively related to indicators of recalcitrant allochthonous and autochthonous organic matter loads, but was not clearly related to an indicator of the quality of allochthonous organic matter inputs

    Cardinality constrained portfolio optimisation

    Get PDF
    Copyright © 2004 Springer-Verlag Berlin Heidelberg. The final publication is available at link.springer.comBook title: Intelligent Data Engineering and Automated Learning – IDEAL 20045th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2004), Exeter, UK. August 25-27, 2004The traditional quadratic programming approach to portfolio optimisation is difficult to implement when there are cardinality constraints. Recent approaches to resolving this have used heuristic algorithms to search for points on the cardinality constrained frontier. However, these can be computationally expensive when the practitioner does not know a priori exactly how many assets they may desire in a portfolio, or what level of return/risk they wish to be exposed to without recourse to analysing the actual trade-off frontier.This study introduces a parallel solution to this problem. By extending techniques developed in the multi-objective evolutionary optimisation domain, a set of portfolios representing estimates of all possible cardinality constrained frontiers can be found in a single search process, for a range of portfolio sizes and constraints. Empirical results are provided on emerging markets and US asset data, and compared to unconstrained frontiers found by quadratic programming

    A Bayesian framework for the analysis of cospeciation.

    Get PDF
    Abstract. Information on the history of cospeciation and host switching for a group of host and parasite species is contained in the DNA sequences sampled from each. Here, we develop a Bayesian framework for the analysis of cospeciation. We suggest a simple model of host switching by a parasite on a host phylogeny in which host switching events are assumed to occur at a constant rate over the entire evolutionary history of associated hosts and parasites. The posterior probability density of the parameters of the model of host switching are evaluated numerically using Markov chain Monte Carlo. In particular, the method generates the probability density of the number of host switches and of the host switching rate. Moreover, the method provides information on the probability that an event of host switching is associated with a particular pair of branches. A Bayesian approach has several advantages over other methods for the analysis of cospeciation. In particular, it does not assume that the host or parasite phylogenies are known without error; many alternative phylogenies are sampled in proportion to their probability of being correct
    corecore