1

1	Running Head: N Dynamics in an Arctic Watershed
2	
3	
4	Copyright by the Ecological Society of America
5	
6	
7	
8	Nitrogen Dynamics in a Small Arctic Watershed – Retention and Downhill
9	Movement of ¹⁵ N
10	
11	
12	Yuriko Yano, ¹ , ³ Gaius R. Shaver, ¹ Anne E. Giblin, ¹ Edward B. Rastetter, ¹ Knute J. Nadelhoffer ²
13	
14	
15	¹ Ecosystems Center, MBL, Woods Hole, MA, 02543, USA;
16	² Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
17	48109, USA
18	

³Corresponding author. Current address: Municipality of Anchorage, Health and Human Services, 825 L St. Anchorage, AK 99501, USA. Email: Yuriko.Yano@gmail.com

1 ABSTRACT

We examined short- and long-term nitrogen (N) dynamics and availability along an arctic
hillslope in Alaska, USA, using stable isotope of nitrogen (¹⁵N), as a tracer. Tracer levels of
¹⁵NH₄⁺ were sprayed once onto the tundra at six sites in four tundra types; heath (crest), tussock
with high and low water flux (mid- and foot-slope), and wet sedge (riparian). ¹⁵N in vegetation
and soil was monitored to estimate retention and loss over a 3-yr period.

7Nearly all $^{15}NH_4^+$ was immediately retained in the surface moss-detritus-plant layer and >857 % of the ^{15}N added remained in this layer at the end of the second year. Organic soil was the9second largest ^{15}N sink. By the end of the third growing season, the moss-detritus-plant layer10and organic soil combined retained ≥ 87 % of the ^{15}N added except at the mid-slope site with11high water flux, where recovery declined to 68 %. At all sites, non-extractable and non-labile-N12pools were the principal sinks for added ^{15}N in the organic soil.

Hydrology played an important role in downslope movement of dissolved ¹⁵N. Crest and 13 mid-slope with high water flux sites were most susceptible to ¹⁵N losses via leaching perhaps 14 15 because of deep permeable mineral soil (crest) and high water flow (mid-slope with high water flux). Late spring melt-season also resulted in downslope dissolved-¹⁵N losses, perhaps because 16 of an asynchrony between N release into melt water and soil immobilization capacity. We 17 18 conclude that separation of the rooting zone from the strong sink for incoming N in the moss-19 detritus-plant layer, rapid incorporation of new N into relatively recalcitrant soil-N pools within the rooting zone, and leaching loss from the upper hillslope would all contribute to the strong N-20 limitation of this ecosystem. An extended snow-free season and deeper depth of thaw under 21 22 warmer climate may significantly alter current N dynamics in this arctic ecosystem.

23

- 1 *Key words*: ${}^{15}NH_4^+$; arctic tundra watershed; total dissolved N; downhill transport of N;
- 2 hydrolysable amino acids; hydrolysable amino sugars; mosses; N dynamics; N immobilization;
- 3 N leaching; N limitation; snowmelt

1	INTRODUCTION
2	Productivity of arctic ecosystems is strongly nitrogen (N) limited despite very large stocks
3	of organic N in soils (Jonasson et al. 1999, Shaver et al. 2001). Many past studies have
4	indicated that the overall N limitation of productivity in these systems is due to slow N
5	turnover in soils (e.g., Weintraub and Schimel 2005). These studies consistently find that net
6	N mineralization during the growing season is lower than the annual plant N uptake
7	requirement in Alaskan tundra ecosystems (e.g., Nadelhoffer et al. 1991, Marion et al. 1987,
8	Giblin et al. 1991, Schmidt et al. 2002). Nitrogen fixation may account for as much as 76–90
9	% of total annual N inputs in arctic tundra ecosystems (Hobara et al. 2006), but it is not
10	sufficient to fill this apparent gap between plant requirement and mineralization.
11	The seasonal downslope movement of dissolved N in relation to the timing of plant uptake
12	has received little attention. The importance of dissolved-N losses is increasingly recognized
13	for many terrestrial ecosystems (Kawahigashi et al. 2004, Rastetter et al. 2005, 2004, Perakis
14	and Hedin 2002, Stepanauskas et al. 2000, Vitousek 1998). Rastetter et al. (2004) simulated
15	downslope N movement in soil water in tundra and found that it influenced the timing and
16	spatial pattern of responses to changes in CO ₂ and climate. However, few studies have
17	demonstrated the links among the temporal and spatial variations in soil N cycling (e.g.,
18	immobilization, mineralization), hydrology, and plant uptake along a hill slope of an arctic
19	watershed.
20	Because arctic tundras are generally underlain by continuous permafrost, there is no deep
21	leaching, and soil water must move laterally down hillslopes near the soil surface. The largest
22	hydrological event in these ecosystems is the spring snowmelt when the largest solute losses,
23	including N, occur (Everett et al. 1989). However, because the soil is still frozen, N released

4

1	into snowmelt water may bypass uptake by microbes and plants as well as non-biological
2	sorption in soil, resulting in large N losses from the system.
3	We added an enriched ${}^{15}\text{NH}_4^+$ tracer at several sites along a hillslope at Imnavait Creek to
4	better understand: 1) short- and long-term fate of inorganic N deposited on the tundra surface,
5	and 2) spatial and seasonal movement of N along the hillslope via leaching. We chose $\mathrm{NH_4}^+$
6	over NO_3^- to minimize rapid ¹⁵ N losses via denitirification. NH_4 is also a product of N
7	fixation, which accounts for more than two thirds of total annual N inputs. Internal N cycling
8	was examined by following the ¹⁵ N tracer into plants and various soil-N pools over three
9	growing seasons at the same locations as ¹⁵ N addition. Nitrogen leaching down the hillslope
10	was examined by following ¹⁵ N into downslope-flow water at and farther downslope of the
11	point of ¹⁵ N addition.
12	We hypothesized that, within the first growing season, nearly all the added N would be
13	immobilized into soils by microbes, as previously observed (Clemmensen et al. 2008, Schimel
14	and Chapin 1996). Because turnover of microbial biomass can stabilize N in soil organic
15	matter (Kramer et al. 2003, Knicker et al. 1997), we anticipated that most of the added N
16	would be incorporated in organic matter and would remain unavailable to plants for several
17	years. Additionally, because microbial cell walls are the single largest source of amino sugars
18	(Kerley and Read 1997, Myrold 1998), we expected a large increase in ¹⁵ N content of
19	hydrolysable amino sugar.
20	In the long term, we hypothesized that the major losses of the ¹⁵ N from the tundra would
21	occur via leaching during snowmelt each year at all sites along the hillslope. We expected
22	little leaching of ¹⁵ N during the growing season when plant and microbial uptake is high and
23	the soil volume available for chemical sorption is high. One exception would be within

5

1	"watertracks" (channels of subsurface water drainage; Chapin et al. 1988) where soil water
2	flows preferentially during the snow-free season. We expected leaching loss of ¹⁵ N to be
3	significant at these sites during the snowmelt and throughout the growing season.
4	METHODS
5	Study area and experimental sites
6	The study was conducted on the east-facing slope of the Imnavait Creek watershed (2.2
7	km ² ; 68° 37' N, 149° 18' W), a small arctic watershed located ~11 km east of Toolik Lake, on
8	the North Slope of the Brooks Range in Alaska, USA (Figure 1-A). Annual mean temperature is
9	about -7°C, and the soil is underlain by continuous permafrost in summer and completely frozen
10	in winter (November – April, Hinzman et al. 1996). The maximum depth of thaw is greatest at
11	crest and valley bottom, where it may exceed 1 m. Elsewhere depth of thaw rarely exceeds 0.5
12	m. Annual mean precipitation is 350 mm, a third of which falls as snow (Hinzman et al. 1996).
13	The watershed has a distinct spring snowmelt period, characterized by saturation of the
14	snowpack followed by flow of a slushy mass of snow (slush-flow) and by discharge of melted
15	snow. Once the snow pack disappears, a major source of stream water is thawing of frozen soil
16	(soilmelt). Nutrient discharge in streams peaks during snowmelt and approaches baseline levels
17	during soilmelt; plant uptake is minimal until the soil thaws. Historically, snowmelt occurs
18	between early May and late June (Hinzman et al. 1996).
19	The vegetation and soils along the hillslope follow a typical North Slope toposequence
20	(Walker and Walker 1996), including a dry, well-drained heath tundra at the crest, relatively
21	well-drained but mesic tussock tundra interspersed with wet watertracks on the hillslope, and a
22	wet-sedge tundra at the riparian zone (Figure 1-B). Watertracks are visually recognizable
23	areas of greater soil water flux with higher density of shrub species and intermittent surface

1	water flow. Detailed description of watertracks is found in (Chapin III et al., 1988). On a
2	hillslope ~1 km south (upstream) of a gauging station on Imnavait Creek, six experimental
3	sites were established, each site containing 2 treatment plots. They were: heath tundra on crest
4	(Crest), non-water track and watertrack tussock tundra on midslope (Midslope_NWT,
5	Midslope_WT), non-water track and watertrack tussock tundra on footslope (Footslope_NWT,
6	Footslope_WT), and wet-sedge tundra on riparian zone (Riparian) (Figure 1-B). There were
7	two replicate treatment plots ($n = 2$) on each site (i.e., 2 x 6 = total of twelve plots), and each
8	plot was 3 m x 6 m in area.
9	Nitrogen fixation, which may account for as much as 76–90 % of total annual N inputs,
10	was significant only near the soil surface $(0-3 \text{ cm})$ and fixation rates within this watershed were
11	similar across the toposequence at ~80 mg m ⁻² yr ⁻¹ (Hobara et al. 2006). The activity of
12	denitrification-enzyme was higher for soil cores collected from the riparian zone than from the
13	crest (Alexander-Ozinskas 2008).
14	¹⁵ N addition
15	On 5 July 2003, we added $(^{15}NH_4)_2SO_4$ dissolved in Imnavait Creek water to each plot at
16	3.92 mmol/m ² using backpack sprayers. This amount was < 0.006 % of the annual N-
17	requirement for plant uptake in tussock tundra (Shaver and Chapin III 1991). The total nitrogen
18	concentration in creek water was very low (total dissolved $N < 23 \mu M$) so no corrections for the
10	
19	15 N from creek water were made. Each 15 N-addition plot served as an experimental unit for 15 N
20	¹⁵ N from creek water were made. Each ¹⁵ N-addition plot served as an experimental unit for ¹⁵ N recovery in the vegetation, soil, soil-extracts, and soil-pore water. For water flowing downhill,
20 21	¹⁵ N from creek water were made. Each ¹⁵ N-addition plot served as an experimental unit for ¹⁵ N recovery in the vegetation, soil, soil-extracts, and soil-pore water. For water flowing downhill, each experimental unit included the area directly below the plot (Figure 1-B, "sampling transects
20 21 22	¹⁵ N from creek water were made. Each ¹⁵ N-addition plot served as an experimental unit for ¹⁵ N recovery in the vegetation, soil, soil-extracts, and soil-pore water. For water flowing downhill, each experimental unit included the area directly below the plot (Figure 1-B, "sampling transects for downslope-flow water").

1	Vegetation sampling
2	Prior to ¹⁵ N addition, green leaves and other plant parts of the dominant species were
3	collected from areas adjacent to the plots. The species collected included deciduous shrubs
4	(Betula nana, Salix spp.), evergreens (Vaccinium vitis-idaea), sedges (Carex spp., Eriophrum
5	vagenatum), and mosses (Hylocomium spp., Sphagnum spp.). After the ¹⁵ N addition, the same
6	tissues were collected from within the plots 1 and 2 yr later. Within 12 hrs of collection, plant
7	samples were separated by species and tissue type and were dried at 50°C.
8	Soil sampling and extraction
9	Five randomly-located soil cores (diameter range: 5-6cm) were collected from each plot
10	immediately before and 1 d, 6 d, 1 mo, and 1 yr after ¹⁵ N addition (4, 6 & 11 Jul, and 5 Aug
11	2003; 12 & 14 Jul 2004), and four cores were collected after 2 yr (16 & 20 Jul 2005). At each
12	collection, cores were taken to the maximum possible depth, defined as either the full core length
13	(40 cm), the bottom of the seasonally thawed "active layer", or to a rock (at Crest only). Upon
14	collection, the length of the core was measured and the core was separated in the field into the
15	following layers by cutting with a knife on a clean plastic sheet:
16	(1) Green Layer, the surface live moss-detritus-plant layer including lichens, graminoid
17	foliage < 2 cm above the ground, and groundcover species (e.g., Vaccinium vitis-idaea,
18	Empetrum nigrum, forbs).
19	(2) 1st Organic Layer, the upper 10 cm of organic soil or, if the organic layer was < 10 cm
20	thick, the entire layer (e.g., there was never > 4 cm of organic soil at Crest);
21	(3) 2nd Organic Layer, organic soil below 10 cm, ranging from 0 cm (Crest) to 17 cm
22	(Riparian) thick; and

1 (4) Mineral Layer, the soil beneath the Organic Layers ranging from 0 cm (Riparian; organic 2 soil extended beyond the depth of thaw) to 7 cm (Midslope NWT). 3 The depth of soil thaw increases through the season, reaching a maximum in late July or early 4 August. Because thaw depth is less variable spatially than the thickness of Oe and Oa horizons and our interest was in sampling water moving along the surface of the frozen soil, dividing soil 5 6 cores by depth was more appropriate than by taxonomic horizons. Average thickness of each 7 laver and their properties are listed in the Appendix A. Within 12 hrs of collection, soil samples were weighed, homogenized, and live roots and 8 rocks hand-picked; the rocks were weighed to determine rock mass. Subsamples were dried at 9 50 °C to determine moisture content. To assess recovery of ¹⁵N in water-extractable N pool over 10 11 time, the remaining homogenized soils were combined by plot and by layer, further 12 homogenized, and then subsamples (approx. 50-100 g, wet weight) were taken from the 1st and 13 2nd Organic Layers. Within 5 hrs, subsamples were added to deionized (DI) water and extracted 14 for 8 hr at 20 °C on a shaker table. In 2003, the ratio of wet soil-to-DI water was 1:10 (w/w) for 15 the 1st Organic Layer, but was 1:5 for 2nd Organic Layer to ensure a sufficiently high N concentration for later analyses. A soil-to-water ratio of 1:10 was used for both layers in 2004 16 and 2005. The extractants were filtered through ashed GF/F glassfiber filters and frozen. 17 We examined ¹⁵N distribution across chemically-fractionated N pools twice during our 18 study. At 1.5 mo after ¹⁵N addition in 2003, three random samples of the 1st Organic Layer were 19 collected, pooled, and processed as described above. We chose this layer because we expected 20 to find a larger fraction of added ¹⁵N and greater microbial activity because of higher 21 temperatures and a longer thaw period than deeper soil layers. Within 2 d the wet soils were 22 23 transferred on ice to the University of Michigan; there the soils were fractionated within 5 d of

collection into salt (0.5 N K₂SO₄)-extractable dissolved N (SEDN), chloroform-fumigation
extractable N (CFN), and residual N (N_{res}) using the method of Brookes et al. (1985). We
determined ¹⁵N in these fractions using alkaline persulfate digestion (Cabrera and Beare 1993)
followed by alkaline diffusion (Brooks et al. 1989). Total ¹⁵N recovery in the bulk soil was
determined in ground subsamples. Because we were not certain whether the extractability
coefficient (*K*n) used in other studies would apply to our study site, we report CFN instead of an
adjusted microbial N value.

We assume changes in ¹⁵N distribution across CFN fractions are minimal based on 8 previous ¹⁵N labeling studies. Redistribution of N among soil-N pools following the initial 9 assimilation was little when ¹⁵NH₄⁺ was added to temperate forest soils (Perakis and Hedin 2001) 10 11 or to tundra soils (Schimel and Chapin 1996). Therefore, to obtain more complete picture of N dynamics at Imnavait Creek, we took additional subsamples of the 1st Organic Layer in year 2 12 and fractionated N by acid hydrolysis rather than chloroform-fumigation. To obtain natural ¹⁵N 13 14 abundance for these fractions, six additional soil cores were collected from outside the plots and 15 processed as described above.

16

Sampling soil pore water

Seven to eight days prior to ¹⁵N addition, ten tension micro-lysimeters were installed at each plot by excavating five holes (diam ~20 cm) and inserting lysimeters on the uphill-side wall of the hole at 10 cm and 20 cm depth, leaving the soil column above the lysimeters intact. The holes were backfilled and marked. Each lysimeter was individually connected to a 500-mL HDPE Erlenmeyer flask, and soil water was collected as described by Lajtha (1999). In a preliminary study, we installed micro-lysimeters at various depths (0-33 cm) and topolocations near the study site and found no installation effect on the concentration of dissolved N after 3, 4,

1 10, 15, and 23 d (data not shown). Therefore, we purged the micro-lysimeters and allowed them to equilibrate for > 5 d prior to the first sampling. Sample collections were made on the day 2 before ¹⁵N addition and 4 d, 1 mo, and 1 vr after addition. Because the void space of a micro-3 4 lysimeter was negligible relative to sample volume collected (< 1 %), we did not purge the lysimeters prior to each sampling. However, at the beginning of each growing season, all 5 6 lysimeters were purged to remove any over-winter water. 7 Sampling snow and downslope-flow water Snow – To determine snow N concentration, we collected snow cores 1–3 wk prior to the 8 start of slush-flow; the bottom ~1cm that had contact with Green Layer was removed. The snow 9 was thawed, filtered, refrozen at the field station, and shipped to MBL for chemical analyses. In 10 11 2004, 5 snow cores each were collected from 5 evenly-spaced topolocations along the hillslope 12 (total 25 cores) and the samples were analyzed separately. Based on the small variability among individual samples in 2004, one core each was collected from the five topolocations (total 5 13 14 cores) in 2006 and all samples were combined for analysis.

15 Downslope-flow water during the spring melt – In May 2004 and 2006, we collected spring melt water to determine ¹⁵N movement. Prior to snowmelt, six 6m sampling transects 16 17 were established for each labeled plot. The transects ran perpendicular to the hill slope, located 1-5 m above the labeled plots and 1, 2, 5, 10, or 15 m below the labeled plots (Fig 1-B). At 18 19 Riparian, where negative grades were found toward the creek and downstream, two sets of two 20 transects were established around the plots, one perpendicular to the creek and the other parallel to the creek (Figure 1-B). All transects at Riparian were 1 m from the plots. The two Riparian 21 transects that were elevated (those on the crest and upstream sides) relative to the other two were 22 23 considered as a reference, and the two below the plot were considered to be "below" the plot.

Water samples were collected using a 60-mL syringe connected by Tygon tubing to a
thin, 30-cm long stainless steel tube with small holes drilled within 5 cm from the closed tip.
These samples were collected from the bottom of the thawed layer, from 3–5 random locations
within the ¹⁵N-addition plot and on each transect. To collect within an extremely shallow thawed
layer, the sampling needle was inserted horizontally to the surface of the frozen layer. These
were pooled by plot or transect in the field to make a similar final volume and processed as for
other water samples.

8 Water collected while snow existed on the plots was called "snowmelt", and water collected after all snow on the plot had disappeared was called "soilmelt". Snowmelt collection 9 became possible only ~ 2 d prior to slush-flow at the gauging station, and the snow cover 10 11 disappeared completely from the entire hillslope within one (2006) or two (2004) weeks after the 12 slush-flow. In 2004, we collected snowmelt samples twice, (18 or 19 May and 22 May), and 13 soilmelt samples once (31 May). In 2006, snowmelt samples were collected on 16, 17, and 19 May and soilmelt samples on 25 May. The winter before the 2004 snowmelt was typical, 14 15 whereas the winter before the 2006 snowmelt was one of the driest winters for this watershed, which has been studied since 1976. Nonetheless, the major slush-flow at the gauging station 16 occurred on 18 May for both years (Rob Giek, personal communication). 17 18 Downslope-flow water during the growing season – Downslope-flow water during the summer was collected at the bottom of the thawed active layer in the same manner as the 19

20 collection of downslope-flow water during the spring melt. In 2004, samples were collected 1 d,

21 1 wk, 1 mo, and 1 yr after ¹⁵N addition. Soil moisture was too low to collect water samples after

22 long periods without rain, especially during the growing season and at the Crest site.

1	Chemical analysis
2	¹⁵ N recovery in hydrolysable N pools – We measured the pool size and ¹⁵ N recovery into
3	three hydrolysable labile-N pools; hydrolysable NH_4^+ (HNH $_4^+$), amino acids (HAA), and amino
4	sugars (HAS). Soils were thawed and five replicates (2–10 g) of ground samples were
5	hydrolyzed and the hydrolysates were neutralized with NaOH (Mulvaney and Khan 2001).
6	Hydrolysable NH_4^+ was determined by a hypochlorite-alkaline phenol method. To determine
7	^{15}N recovery in this pool, aliquots (~10 $\mu mol\text{-}N)$ of the hydrolysates were diffused in a 450-mL
8	Mason jar with MgO at 50 °C for 6 hr onto an acid trap according to Mulvaney and Khan (2001),
9	but replacing their "wet" acid trap (a beaker containing 5 mL of 4% H ₃ BO ₃) with a "dry" acid
10	trap (an acidified GF/D filter disc encapsulated in Teflon tape) so that N on the trap could be
11	directly analyzed for ¹⁵ N by isotope ratio mass spectrometry.
12	Concentration and ¹⁵ N recovery for hydrolysable amino sugar and amino acid were
13	determined by a sequential diffusion of the neutralized hydrolysates. For concentration, the
14	hydrolysate was diffused for 8 hrs into a wet acid trap, then re-diffused with a new wet acid trap
15	for 6 hrs after converting amino acids to NH_4^+ by a ninhydrin reaction under an acidic condition
16	(Mulvaney and Khan 2001). Both first (HAS) and second (HAA) acid traps were analyzed for
17	$\mathrm{NH_4}^+$ concentration as for hydrolysable ammonium. To determine ¹⁵ N recovery in the HAS and
18	HAA pools, aliquots of the hydrolysate (~10 μ mol-N) were sequentially diffused with dry acid
19	traps in place of wet traps. Because total soil N is a sum of hydrolysable and non-hydrolysable
20	N (i.e, total soil-N = $HNH_4^+ + HAS + HAA + hydrolysable-unknown N + non-hydrolysable N)$,
21	pool sizes and $\delta^{15}N$ signatures of hydrolysable-unknown N and non-hydrolysable N fractions
22	combined, or non-labile N fraction (non-LN), were calculated by differences in δ^{15} N and mass of
23	known N pools (total soil N, HNH_4^+ , HAS, and HAA). We are aware that some of the

1	proteinaceous-N in soil may not be hydrolyzed by hot 6 N HCl because of a physical protection
2	of N compounds by non-hydrolysable components, such as humic substances (Friedel and
3	Scheller 2002, Zang et al. 2000). We assumed that HAA determined in this study is a fraction of
4	peptidic N in soil that was more susceptible to degradation by extracellular enzymes in the soil
5	than the non-hydrolysable fraction.
6	¹⁵ N analysis – Following alkaline-persulfate digestion (Cabrera and Beare 1993), all solution
7	samples were diffused onto dry traps by the method of Sigman et al. (1997) for $\delta^{15}N$ analysis.
8	Dried vegetation and soil samples were ground to pass a 0.15-mm screen for total C, N, and $\delta^{15}N$
9	analyses. All ground and diffused samples were analyzed by isotope ratio mass spectrometry at
10	the MBL Stable Isotope Laboratory, unless noted otherwise.
11	$DIN \& DON - In$ solution samples, NH_4^+ -N was determined by the hypochlorite-alkaline
12	phenol method. A Cd-reduction method was used to determine NO ₃ ⁻ -N concentrations in
13	samples collected in 2003-2005, whereas ion chromatography was used for samples collected in
14	2006. Nitrite in our samples was below the detection limit (< 0.2 μ M). Total dissolved N (TDN)
15	was determined by a persulfate digestion (modified Solozano and Sharp 1980) followed by NO ₃ ⁻
16	analysis. For 2005 samples, a high-temperature combustion method was used. Cross
17	comparison of selected samples showed that the between-methods difference in measured
18	concentration was < 5%. Dissolved organic N (DON) was calculated as the difference between
19	TDN and DIN.
20	Data analysis
21	The physico-chemical properties of each layer were determined separately, and the mean
22	for each layer was calculated by plot. For 1- and 2-yr Green Layer samples, we estimated the

23 partitioning of ¹⁵N between live mosses and non-moss compartments. First, using the δ^{15} N

1	values of mosses within the enriched plots and the moss biomass estimates by Hahn et al. (1996)
2	and Hastings et al. (1989) we estimated the total recovery of ¹⁵ N in mosses. The non-moss
3	component, mainly the detritus trapped in the mosses, was then calculated as a difference
4	between total recovery in Green Layer and recovery in mosses.
5	The recovery of added ¹⁵ N in plants, Green Layer, and soil, was determined as percent
6	¹⁵ N-gain relative to background ¹⁵ N. The enrichment of ¹⁵ N in the dissolved-N pool was
7	expressed as 15 N atom % excess, which is the excess percentage of 15 N atom % relative to the
8	reference level. A minimum detectable difference for 15 N analysis of dissolved-N was 5 ‰ in
9	δ^{15} N or 0.0018 % in ¹⁵ N atom % excess.
10	To evaluate rates of changes in mobilized ¹⁵ N (i.e., dissolved ¹⁵ N) along the hillslope, we
11	estimated for downslope-flow waters the distance required to reduce ¹⁵ N-atom % excess in the
12	water by 50 % and 95 % of the level in downslope-flow water within the plots. To do so, we
13	used linear regression to estimate the relationship between the natural-log of ¹⁵ N-atom % excess
14	(Ln-APE) and distance from the plots for each site, then used the regression equation to calculate
15	the distance for 50 % and 95 % reduction.
16	To estimate ${}^{15}N$ transport along the hillslope during snowmelt in 2004, we used our ${}^{15}N$ -
17	atom % excess data and snowpack-water equivalents (Table 1), which were calculated from data
18	reported for the years 1985–1987 and 1989–1990 by Hinzman et al. (1996), assuming that the
19	snowpack water equivalents during our study were similar to 1985-1990 average. We assumed
20	that each site received all melt water in the snowpack directly above it because the frozen ground
21	would prevent penetration of water and because evapotranspiration would be negligible. We did

not include data from 2006, because the 2006 winter was unusually dry with an unusually thin

snowpack.

4 significant difference (LSD) test and a significance level of *P* < 0.05. When necessary, data
5 were natural-log or square-root transformed prior to statistical analysis to obtain similar

6 distribution and variance across sites.

Our attempt to accomplish a detailed characterization of temporal as well as spatial N
dynamics along the complete hillslope required some compromises on sample replication and on
the suite of analyses conducted simultaneously. Low replication (*n* = 2) constrained our choice
of statistical analysis to simple analyses such as one-way ANOVA, t-test, or regression analysis
for samples collected on the same day, and no statistical significance could be reported for ¹⁵N
level across different points in time. Nonetheless, the synthesis of the information across time
and space does provide insights into N dynamics within a N-limited watershed.

14

15

1

2

3

RESULTS

Short-term dynamics

16	¹⁵ N Recovery in the soil and Green layer – More than 99% of the added ¹⁵ N was recovered
17	in the soil and Green Layers immediately (1 d) after addition, and recovery remained high
18	through the first growing season (Figure 2). The Green Layer retained > 63% of all recovered
19	¹⁵ N in the ground at both 1 d and 1 mo. The 1st Organic Layer was the second largest sink for
20	15 N at these dates, and this and Green Layers together retained > 86% of 15 N added.
21	Chloroform-fumigation and salt-extractable N vs. residual N – Only 1.5 mo after addition,
22	most (89–97 %) of the ^{15}N in the 1st Organic Layer was in the non-extractable pool (N $_{res}$) at all
23	sites, whereas \leq 3 % of recovered ¹⁵ N in this soil layer was found in salt (K ₂ SO ₄)-extractable

dissolved N (SEDN) and ≤ 9 % in chloroform-fumigation-extractable N (CFN) (Table 2). The
SEDN and CFN pools together accounted for < 4 % of total added ¹⁵N in all sites. *N in soil pore water and WEDN* – During the growing season, DON was the dominant form
of N (≥ 90% of TDN) in both lysimeter water and water-extractable dissolved N (WEDN; Table
3-A). The ¹⁵N-atom % excess of pore water at 10 and 20 cm (approximately at the bottom of 1st
and 2nd Organic Layers, respectively) showed a sharp drop (9-fold on average) within the first
month (Figure 3).

¹⁵N-atom % excess of the WEDN pool was 2–7 times greater in the 1st Organic Laver 8 than in the 2nd Organic Layer (Figure 4), as observed for the bulk soil (Figure 2). Measured 9 ¹⁵N-atom % excess of the WEDN pool within the 1st Organic Layer was significantly greater at 10 Crest than all other sites immediately after the addition (4 d), corresponding with the highest ¹⁵N 11 recovery for this soil layer at Crest (Figure 2). Contrary to the decreasing trend within the first 12 month of ¹⁵N addition observed for the pore water collected by lysimeters at 10 cm, mean ¹⁵N-13 atom % excess of the WEDN pool in the 1st Organic Layer increased by up to 5-fold on average 14 15 during the same time period for all but Crest sites. The highest increase in atom % excess of WEDN was observed at NWT and Riparian sites. 16

17

Long-tem dynamics

¹⁵N Recovery in the soil and Green layer – The strong ¹⁵N retention in the ground layers during the first growing season persisted even after 2 yrs, with ≥ 92 % recovery of added ¹⁵N at most sites (Figure 2). Exceptions were Crest and Midslope watertrack (Midslope_WT) sites, where total recovery tended to decrease over time with 89 % (Crest) and 69 % (Midslope_WT) of the added ¹⁵N recovered at the end of the 2nd year. For Crest the decline was due mostly to decreased recovery in the soil (Organic and Mineral) layers, whereas for Midslope WT recovery

1	declined in both Green Layer and soil layers. Extremely high total recovery (as high as >180 %,
2	much more than was added) was found only at footslope non-watertrack (Footslope_NWT) and
3	Riparian sites and was due to very high ¹⁵ N recovery in one sample of the 1st Organic Layer (2–
4	3 times greater than the average of all sites, Figure 2).
5	Throughout the first 2 yrs, the Green Layer was the largest sink for added ¹⁵ N; at both year 1
6	and 2 this layer still retained ~ 60 % or more of added ¹⁵ N. Combined with the second largest
7	¹⁵ N-sink (1st Organic Layer), the upper two ground layers retained 66 % of added ¹⁵ N at
8	Midslope_WT site, 84 % at Crest and \ge 92 % at all other sites at the end of second year. The
9	Mineral Layer contributed little to ¹⁵ N retention, except at the Crest, where the mineral soil
10	(average thickness above rocks = 4 cm) accounted for up to half of the overall recovery in the
11	soil (Figure 2).
12	Hydrolysable and non-hydrolysable N pools – Acid hydrolysis of the 1st Organic Layer
13	after 2 yrs of 15 N addition revealed that hydrolysable labile-N (HLN) pools (hydrolysable NH ₄ ⁺ ,
14	amino sugar, and amino acids) were an important sink for 15 N and were 15–39 % of 15 N retained
15	in the 1st Organic Layer (Table 4). The non-labile N pool, which is chemically less labile than
16	HLN, contained the rest of the 15 N (61–85 % of total 15 N). Within the HLN pool, hydrolysable
17	amino acid (HAA) was the dominant sink for added ¹⁵ N, containing on average 4 (non-Crest
18	sites) to 8 times (Crest) more 15 N than hydrolysable ammonium (HNH ₄ ⁺) and amino sugar
19	(HAS) pools combined.
20	Of the ¹⁵ N recovered in the 1st Organic Layer, the contribution of various N pools

21 differed across sites. The HLN pool contributed most to ¹⁵N recovery at the Crest (39 %),

22 whereas the non-labile N pool was more important at the two NWT sites (85 %, Table 4). At the

3	N in soil pore water and WEDN – The ¹⁵ N-atom % excess of soil pore water collected at
4	10 and 20 cm by lysimeters after 1 yr was low, similar to the amount at 1 mo, except at the Crest
5	site (Figure 3). For the entire study period, ¹⁵ N-atom % excess of the WEDN in the 1st Organic
6	Layer generally was higher than the level observed immediately after (6 d) ¹⁵ N addition (Figure
7	4). In contrast, in the 2nd Organic Layer, ¹⁵ N-atom % excess of the WEDN disappeared entirely
8	after the first year except in NWT sites. During the first 2 years, ¹⁵ N recovered in the WEDN
9	pool in the soil was only < 1 % of added ¹⁵ N.
10	<i>Recovery in the vegetation</i> – Combining the ¹⁵ N results in this study with the biomass data
11	from the same sites by Hahn et al. (1996) and Hastings et al. (1989), we found that ¹⁵ N recovery
12	by mosses was much greater than by vascular plants at all but the Riparian site, and this trend
13	was magnified in year 2 for the tussock tundra sites (Midslope and Footslope, Table 5). At 1
14	year, mosses contained 20–50 % of added ¹⁵ N at all sites but the Riparian, whereas the entire
15	above ground biomass of the vascular plants contained only 6 % at Riparian and 1–3 % at all
16	other sites. Retention by the vascular plants declined over time and by year 2, vascular plants
17	accounted for ≤ 1 % of added ¹⁵ N at all sites. In contrast, ¹⁵ N recovery in the mosses increased
18	from year 1 to year 2 at the tussock tundra sites (Midslope and Footslope), becoming the
19	predominant ¹⁵ N sink (Table 5, Figure 2). If we make the unlikely assumption that 10 % of the
20	entire aboveground vascular biomass was found in the Green Layer, vascular plants could
21	explain a maximum of ~ 1 % of the added ¹⁵ N.

For both 1- and 2-yr samples, the partitioning of ¹⁵N between live mosses and non-moss
components within the Green Layer differed across the sites (Figure 2). The mosses were one of

1	the major long-term sinks for added ${}^{15}\text{NH}_4^+$ especially at the tussock tundra sites (Midslope and
2	Footslope). In contrast, the non-moss component, mostly plant detritus, was the dominant ^{15}N
3	sink at the Crest and Riparian tundra sites, accounting for 72-74% (Crest) and nearly 100 %
4	(Riparian) recovery within the Green layer.
5	Chemistry and movement of dissolved N in downslope-flow waters
6	DIN vs. DON – Downslope-flow waters were dominated by DON across all seasons.
7	Although NO ₃ ⁻ was the dominant form (66 %) of TDN in the snow pack, unlike the soil waters
8	collected during the growing season (WEDN and lysimeter waters) (Table 3-A, B), this
9	dominance quickly disappeared and NO^{3-} became < 1 % of TDN as soon as the melt water from
10	the snow pack made contact with the frozen ground and was collected as snowmelt water. The
11	concentration of NO_3^- stayed low for all water samples collected during the rest of the year. In
12	contrast, DON, which was a minor component of TDN in the snow pack (17 %), increased
13	rapidly as the melt event progressed, comprising 90–96 % of TDN in downslope-flow water
14	during snowmelt and 96–99 % during soilmelt. DON remained a predominant fraction
15	throughout the growing season (95–96 % of TDN, Table 3-B).
16	Mobility and transport of ¹⁵ N-TDN – The ¹⁵ N enrichment in downslope-flow water within
17	the ¹⁵ N-treated plots was measured as ¹⁵ N-atom % excess of TDN. For the snowmelt period, the
18	enrichment differed by site for both 2004 and 2006, and was roughly 2-3-fold greater at Crest
19	than at other sites (Figure 5), whereas the enrichment was more similar among sites during the
20	soilmelt.
21	Through the 2004 season, ¹⁵ N-atom % excess of downslope-flow waters within the plots
22	was generally larger during snowmelt than during soilmelt or the growing season (Figure 6).

Even though ¹⁵N-atom % excess of downslope-flow water declined with increasing distance 23

from the plots, at Midslope sites the atom % excess below the treatment plots was still elevated 1 (P < 0.05) relative to the reference location above the plots at all sampling dates. In contrast, the 2 atom % excess of water below the treatment plots was not elevated significantly relative to the 3 4 reference location at Footslope and Riparian sites (P > 0.05). At least some dissolved ¹⁵N leached downslope in all seasons at Midslope sites. The 5 negative linear relationship between the natural-log of ¹⁵N-atom % excess (Ln-APE) and the 6 distance from the plots for several sites indicates that enrichment of ¹⁵N in downslope-flow water 7 8 declined exponentially as the water moved downhill (Figure 7). At Midslope sites the linear relationship held though the entire spring melt (snowmelt and soilmelt) of both 2004 and 2006 9 $(R^2 = 0.57 \text{ to } 0.93)$, whereas at Crest, a tight linear relationship was found only during the 10 snowmelt of normal snow year (2004, $R^2 = 0.95$). For the Riparian site, the decline of ¹⁵N-atom 11 % excess with distance was greatest; thus at this site only 1 m was required to reduce ¹⁵N in the 12 13 water by the same proportion as at 5-10 m below the other sites. The loss of ¹⁵N atom % excess in the downslope-flow water varied both temporally and 14 spatially. Regardless of the initial enrichment, the distance required to reduce ¹⁵N-atom % 15 excess by 95 % ($D_{0.95}$) at Midslope was greatest during the soilmelt compared to other seasons 16 (Table 6). During the soilmelt of 2004, the $D_{0.95}$ at Midslope was 29–51 m, approximately 2–4 17 times greater than during the snowmelt and up to 4 times farther than during the growing season 18 (Table 6). Although smaller in magnitude, the $D_{0.95}$ at Midslope for the soilmelt of 2006 was 19 20 also greater than for snowmelt (1.1–1.2 times). The $D_{0.95}$ at more steeply sloping sites (Crest and Midslope) was on average twice as great as on less steep sites (Footslope and Riparian), with 21

22 Riparian sites having the shortest $D_{0.95}$; 1 m (2004) and 3 m (2006).

1	We estimated the total amount of ¹⁵ N mobilized from soil during the snowmelt of 2004, a
2	year of near-normal snowpack, using ¹⁵ N-atom % excess of TDN and the estimated volume of
3	downslope-flow water during snowmelt (Table 1). When the volume of the downslope-flow
4	water was taken into account, the largest total ¹⁵ N release from the plots into the water occurred
5	at the Riparian site (21 % of initial ¹⁵ N added), which had roughly 600-times more surface water
6	flow (based on upslope drainage area) than the Crest (Figure 8). In contrast, although the ^{15}N
7	enrichment at the Crest was the highest of all sites (Figure 5), the total ¹⁵ N release during the
8	snowmelt accounted for the smallest proportion of 15 N among all sites (0.04 % of the added 15 N;
9	Figure 8). As observed for 15 N-atom % excess, nearly all (96 %) of the 15 N released into the
10	snowmelt water at the Riparian site disappeared within 1 m of the plots.
11	DISCUSSION
12	At Imnavait Creek, ¹⁵ NH ₄ ⁺ -N deposited on the tundra surface followed two alternative
13	pathways during the first growing season: it either remained relatively labile in the Green Layer
14	$(> 70 \% \text{ of added } ^{15}\text{N})$ or it became stabilized into a recalcitrant soil-N pool below the Green
15	Layer (< 30 %), presumably via turnover of microbial biomass (Figure 9). The strong N-sink
16	within the Green Layer suggests that this thin surface layer plays a key role in N cycling in this
17	tundra ecosystem.
18	Added ¹⁵ N was tightly retained, with very little loss over 3 years from all but Crest and
19	Midslope_WT sites, where ¹⁵ N was likely lost in vertical or horizontal leaching (Figure 9). The
20	strong and persistent retention of ¹⁵ N within Green Layer and relatively recalcitrant soil-N pool
21	contributes significantly to the chronic N limitation in this ecosystem.
22	A conceptual model of the downhill movement of ¹⁵ N along the Imnavait Creek hillslope

1	retained ¹⁵ N, resulting in a greater ¹⁵ N release into downslope-flow water at WT and Riparian
2	sites than at NWT, and during snowmelt than other times of the year. Losses of ¹⁵ N were driven
3	by a combination of total ¹⁵ N released in gravitational-flow water, the N-immobilization capacity
4	of the system, and the flow rate of the water. Thus we hypothesize that ¹⁵ N retained in the
5	ground is most vulnerable to losses at Midslope_WT during soilmelt, mainly because of
6	asynchrony between the timing of the release and biological and non-biological immobilization.
7	In contrast, N losses at Crest occur mainly by vertical leaching to deep mineral soil. Together,
8	these leaching losses further intensify N limitation this ecosystem.
9	Short-term dynamics
10	Over 70 % of all the added ${}^{15}NH_4^+$ -N was immediately and tightly retained within the
11	Green Layer across all sites (Figure 9). The high average recovery during the first growing
12	season at Midslope and Footslope sites (73-117 %) was largely due to the mosses' ability to
13	retain incoming ${}^{15}\mathrm{NH_4}^+$ at high efficiency, and because mosses dominated total biomass at these
14	sites (58–79 % of total biomass; Hahn et al. 1996). In contrast the non-moss component, mainly
15	plant detritus rather than live vascular plants, was the major sink for ¹⁵ N at Crest and Riparian
16	sites, where moss accounted for only $1-17$ % of total biomass (Hahn et al. 1996). Uptake by
17	vascular plants within the Green Layer was unimportant at all sites, because even with our
18	highest estimate of 15 N recovery by vascular plants in the Green Layer we could explain only ~1
19	% of ¹⁵ N recovery.
20	Fast and strong retention of NH_4^+ has been reported for both mosses and plant detritus.
21	Many moss species can take up water and nutrients over their entire surface (Turetsky 2003), and
22	thus efficiently scavenge both NH_4^+ and NO_3^- at low concentrations (Press and Lee 1982 cited in
23	Turesky 2003). Additionally, some Sphagnum species possess cation-exchange capacity on their

cell walls (Clymo 1963), capturing atmospherically deposited NH4⁺ along with other cations. By
monitoring ¹⁵NH4⁺ added to the surface of *Hylocomium* species, Eckstein (2000) found that the
mosses had high nutrient recycling ability and that most added ¹⁵N was allocated to new growth
in the following year rather than being released to the soil. Our results are consistent with other
studies: Kotanen (2002) found that mosses assimilated N more efficiently than higher plants, and
Li and Vitt (1997) found that nearly all ¹⁵N added as atmospheric deposition was retained in the
moss layer in boreal peatlands.

Decomposing plant detritus can be also a significant sink for added NH_4^+ in northern 8 temperate forests (Currie et al. 1999, Nadelhoffer et al. 1999) and in laboratory sorption 9 experiments with peat, fulvic- and humic-acids (Thorn and Mikita 1992). These studies point to 10 11 non-biological fixation (e.g., with quinones) as one of the major mechanisms that retains added NH_4^+ . Similarly, by tracing ¹⁵ NH_4^+ injected into tussock and soil cores near our study site, 12 Schimel and Chapin (1996) found that the detritus was the dominant sink for ¹⁵N (2.7-times 13 greater than live plants). They found that live graminoids (*Carex*) were the major sink for ¹⁵N in 14 cores from a wet-meadow near Imnavait Creek, recovering 21-times more ¹⁵N than plant 15 detritus, but this may have been because ¹⁵N was injected into the rooting zone, where it would 16 be immediately available for uptake, rather than applied to the surface where it would most likely 17 18 be immobilized into litter and mosses.

19 Upon entering the 1st Organic Layer, ¹⁵N was quickly converted into recalcitrant forms of N 20 within the first growing season ($N_{res} > 89\%$ of ¹⁵N recovered in the 1st Organic Layer). The 21 small ¹⁵N recovery in the CFN pool relative to N_{res} pool may be an indication of rapid turnover 22 of microbial biomass (Table 2). Alternatively, non-biological immobilization of ¹⁵N into 23 recalcitrant soil organic matter, by such as NH₄⁺ fixation with quinones, may explain the greater

1	recovery in N_{res} . Transfer of undecomposed necromass of ¹⁵ N-enriched mosses to the 1st
2	Organic Layer would not likely explain the high recovery of 15 N in the N _{res} pool (Table 2),
3	because the life-span of <i>Sphagnum</i> and <i>Hylocomium</i> shoots is at least 2–3 yr (Aerts et al. 1999,
4	Eckstein 2000) and because if the necromass of mosses from the first growing season accounts
5	for 22–31 % of added ^{15}N in the N_{res} pool at Midslope and Footslope sites (the N_{res} pool
6	explained 89–97 % of recovered ¹⁵ N within the 1st Organic Layer, Table 2), we would see a
7	large decline of ¹⁵ N recovery in the Green Layer by the end of the third growing season.
8	Other short-term studies in tussock and wet-sedge tundras at nearby Toolik Lake have
9	reported much higher recovery of ¹⁵ N in the chloroform fumigation-extractable N (CFN) pool
10	than we found in this study (< 4 % of added 15 N). For example, Nordin et al. (2004) found that
11	20–28 % of 15 N injected to the tussock tundra (0–10 cm below the moss layer) in July was
12	recovered in the CFN pool after 4 hrs, and Schimel and Chapin (1996), who also injected the
13	label beneath the surface, found similar recovery for both tussock (39 %) and wet-meadow (22
14	%) tundras after 5 d incubation in August. (Note: to estimate CFN in these previous studies, the
15	reported microbial-N values were back-corrected for the extractability coefficient, Kn; 0.45 for
16	Nordin et al. and 0.54 for Schimel and Chapin).
17	The much higher recovery in CFN in these previous studies can be attributed principally to

the injection method, which bypasses the Green Layer that was the principal location of NH_4^+ retention in our study. The short duration between labeling and sampling (4 hrs and 5 d) in the previous studies compared to ours (1.5 mo) might also have resulted in greater recovery of ¹⁵N in microbial biomass. However, Schimel and Chapin (1996) found that N partitioning into different N pools within the first 5 d and 1 mo was similar. A comparison of our study with these previous studies also suggests that the dominant sink for NH_4^+ produced in the organic soil (e.g., by mineralization) is microbial biomass, whereas NH₄⁺ deposited on the surface is initially
 retained in the Green Layer.

The relatively high ¹⁵N-atom % excess values observed for the soil pore water 4 d after 3 ¹⁵N addition indicate that a small fraction of ¹⁵N applied to the tundra surface penetrated quickly 4 to as deep as 20 cm, presumably facilitated by the rain event the night after ¹⁵N addition. The 5 sharp declines in ¹⁵N-atom % excess between 4-d and 1-mo were likely caused by turnover of the 6 7 dissolved-N pool via uptake by microbes or plants, and by non-biological stabilization of 8 dissolved N followed by replenishment of the dissolved-N pool with natural-abundance level N. 9 In this ecosystem, microbes and plants quickly take up nearly all N in labile forms. The dissolved-N pool would be subsequently replenished via slow dissimilation of soil organic N 10 (Shaver et al. 1992), but dissolved-N produced in this way would be less enriched with ¹⁵N 11 because of discrimination against ¹⁵N during dissimilation and export (Dijkstra et al. 2008). This 12 would lead to preferential stabilization of ¹⁵N into microbial biomass and the recalcitrant soil-N 13 pool. For example, for wide range of soil types, vegetation, and climate, Dijkstra et al. (2006) 14 15 found that the microbial-N pool was 3.7 ‰ larger than the extractable-N pool and that microbial ¹⁵N enrichment and net N mineralization rate were positively correlated. Similarly, in Swedish 16 Lapland Clemmensen et al. (2008) found that most ${}^{15}N$ added as NH_4^+ , NO_3^- , or glycine was 17 retained in microbial biomass after 2 d but half of the immobilized ¹⁵N was transferred to a non-18 extractable-N pool within 26 days and that 15 N exported as dissolved-N was < 1 % during this 19 time. In our study we found the opposite short-term (≤ 1 mo) trends in ¹⁵N-atom % excess, i.e., 20 decreasing soil-pore-N and increasing WEDN over time (Figures 3 and 4). This suggests that 21 part of the ¹⁵N initially dissolved in soil-pore water was removed over time and became more 22 23 stable WEDN, perhaps via assimilation to microbial biomass or abiotic sorption.

1	Long-term dynamics
2	The loss of ¹⁵ N over 2 yrs at Crest and Midslope_WT sites may be attributed to leaching
3	(Figure 9). At the Crest, the highly permeable mineral soil (rock content = 52% (w/w),
4	Appendix A) and deep thaw beneath the thin (~4 cm) organic mat facilitated a vertical leaching
5	of ¹⁵ N at significant rain events. Thaw depth in the heath tundra of the Crest in this study area
6	exceeds 1 m (Everett et al. 1989). Thus, it is possible that ¹⁵ N not recovered in our samples was
7	retained in the mineral soil deeper than our sampling-depth limit (8cm because of obstruction by
8	rocks). Gravitational downslope-flow water movement would also explain the decline of 15 N
9	recovery during our study period for Midslope_WT (Figure 9). Although there was no
10	difference in the depth of thaw or any clear gradient between NWT and WT (Yano et al.,
11	unpublished data), we frequently observed a flow of water through and under the Green Layer in
12	gaps between tussocks within the Midslope_WT, whereas no such flow was visible at
13	Midslope_NWT. Thus, at Midslope_WT, greater flux of downslope-flow water within the
14	Green and thawed Organic Layers during the snow-free season may have resulted in the loss of
15	added ¹⁵ N from the plots. At the Footslope_WT and Riparian, both horizontal and vertical
16	movement of water is slower because of the smaller gradient of the slope and the shallower water
17	table, leading to the small change over time in ¹⁵ N recovery at Footslope and Riparian sites.
18	Although some N could be lost via denitrification in the Riparian site, as suggested by the higher
19	denitrification-enzyme activity in Riparian than Crest soils (Alexander-Ozinskas 2008), little
20	overall losses of ¹⁵ N at the Riparian site suggest that neither denitrification nor leaching losses
21	are large there.
22	Nitrogen fixation could reduce the enrichment of ¹⁵ N in the ground-N pool by dilution.

23 However, this is not likely the reason for the decline of 15 N at Crest and Midslope_WT sites,

1	because the rate of N fixation near these sites (~ 0.08 g m ⁻² yr ⁻¹ ; Hobara et al. 2006) was too low
2	to account for the observed changes in the 15 N atom % of the ground-N pool (165-860 g/m ²).
3	Furthermore, if dilution by N fixation were important, it should be observed at other sites, given
4	the similar N-fixation rate down the entire hillslope (Hobara et al. 2006).
5	The few measurements of extremely high ¹⁵ N recovery at Footslope_NWT and Riparian
6	(i.e., recovery of more than 100 % of the amount added; Figure 2) were probably due to uneven
7	distribution of ¹⁵ N within the 1st Organic Layer as a result of the application method. This
8	unevenness may have been amplified by disruption of the connectivity of soil water as the tundra
9	progressively dried out in mid-late growing season. In 2003, the study area continued to dry
10	through the early and mid-season until a rain event on 10 August (Shaver et al., unpublished
11	data). The summer of 2005 was one of the driest years in the 30-year history of research at
12	Imnavait Creek, and by the July sampling date all surface water had disappeared, except for a
13	few patches at Riparian. Because of the slight topographic gradient and lack of a watertrack at
14	Footslope_NWT and Riparian sites, water in the soil would be expected to move little during dry
15	periods, creating hot spots for ¹⁵ N in the soil. The exceptionally high recoveries in the 1st
16	Organic Layer at these sites were generally driven by only one of the 4–5 cores taken per plot,
17	and removing these outliers from the analysis gave us more reasonable recovery (dotted lines in
18	Figure 2).
19	Nearly all ¹⁵ N that remained in the plots between years 1 and 2 was found in the ground
20	(Green Layer and soil). As observed for short-term dynamics, the relatively recalcitrant soil-N

21 pool (i.e., non-labile N pool, or hydrolysable-unknown N and non-hydrolysable N combined)

accounted for > 60 % of ¹⁵N recovered in the 1st Organic Layer after 2 yrs (Figure 9, Table 4).

23 This combined with the very small recovery in the vascular plants (< 6% of added 15 N in year 1

and < 1 % in year 2, Table 5) indicates that very little of the added ¹⁵N had become available for
uptake by vascular plants during the study period. The strong ¹⁵N retention by the Green Layer,
which is above the rooting zone, and the incorporation of new NH₄⁺-N into the relatively
recalcitrant soil-N pool in the rooting zone may play a significant role limiting N availability to
vascular plants in this ecosystem.

The greater contribution of non-labile N and HAA pools to ¹⁵N recovery relative to 6 hydrolysable NH₄⁺ pool (Table 4) indicates turnover of microbial biomass and/or non-biological 7 stabilization as processes that incorporate ¹⁵N into recalcitrant soil-N. In a laboratory study, 8 Knicker et al. (1997) found that NH₄⁺ added to organic residues was quickly assimilated into 9 10 microbial biomass as peptides and amides and that these compounds were the major forms of 11 recalcitrant soil-N. Because proteinaceous compounds are generally chemically reactive, they 12 react with soil organic matter to form recalcitrant N. In contrast, a number of studies have suggested that non-biological condensation of phenolic or guinone structures with NH₄⁺, amino 13 acids, and proteins is one of the major mechanisms that form recalcitrant N in soils (studies 14 summarized in Knicker, 2004). Contrary to our expectations, the recovery of added ¹⁵N in the 15 HAS pool was low (Table 4). This may indicate that in our study non-biological immobilization 16 is more important than turnover of microbial biomass. Alternatively, the low recovery in the 17 18 HAS pool may be a result of relatively fast turnover of this pool. One recent study found a 19 decline in HAS upon changes in land-use (Zhang et al. 1999); in this study the cultivation of native grassland for > 80 yrs reduced HAS concentration by 6 %, suggesting faster turnover of 20 HAS pool relative to other N-compounds in the soil. 21

	ч	
	٠	

Hydrology and Movement of dissolved N

A conceptual model of the movement of ¹⁵N down the hillslope (Figure 10) indicates that 2 flux and flow path of water are a critical element that determines the magnitude of total ¹⁵N 3 4 released from the Green Layer and soil in this tundra ecosystem. For example, when we estimated ¹⁵N released into downslope-flow water during the 2004 snowmelt (Figure 10), the 5 high ¹⁵N enrichment of dissolved-N pools at the Crest site was offset by the low water flux, 6 whereas the smaller ¹⁵N enrichment at the Riparian site was accompanied by high water flux, 7 resulting in an estimated total 15 N-release into the snowmelt water of as much as ~20 % of added 8 (Figure 8). Similarly, total ¹⁵N release into downslope-flow water was greater during the 9 snowmelt than other seasons at all sites, it was greater at Riparian than other sites at all times, 10 and it was greater at WT than NWT sites (Figure 10). The high total ¹⁵N release during 11 snowmelt occurs because: 1) the snowmelt water exclusively flows through the thawed Green 12 Layer where most 15 N is retained, because most soil underneath it is still frozen at this time; 2) 13 14 snowmelt water is highly concentrated with ions relative to rain water (up to three times higher concentration, Everett et al. 1996), thus exchanging ¹⁵NH₄⁺ that was retained on the cation-15 exchange sites of mosses in the Green Layer more efficiently than rain water; 3) any soluble-N 16 compounds that have accumulated in Green Layer over winter are subject to leaching at 17 snowmelt; and 4) biological ¹⁵N immobilization and non-biological sorption in the organic soil 18 19 would be negligible because most of the organic soil and rooting zone is still frozen, although some microbial uptake within the thawed layer would be expected during the melt season 20 (Brooks et al. 1998). The difference in the pattern of ¹⁵N enrichment of downslope-flow water 21 22 between 2004 and 2006 may be attributed to the unusually thin snowpack, and thus less 23 meltwater volume, in 2006.

1	¹⁵ N enrichment in dowslope-flow water declined with distance from the plots (Figure 10).
2	This decline is most likely caused by the addition of N from other sources, lowering 15 N-to- 14 N
3	ratio of dissolved-N pool. Potential N inputs include N-fixation, dissimilation, and N from the
4	snow pack and melt water itself. However, because virtually no added ¹⁵ N was lost from the
5	Riparian and the two NWT sites throughout the study period even though as much as 21 % of
6	added ¹⁵ N was released into downslope-flow water (Figure 8), subsequent immobilization of
7	released ¹⁵ N must also be very high. Loss of ¹⁵ N to deep soil via vertical leaching is unlikely at
8	all but Crest sites due to shallow thaw depth especially during snowmelt or soilmelt.
9	We suspect that rapid biological and/or non-biological immobilization combined with
10	dilution of the label by the replenishment of the dissolved-N pool from dissimilation is most
11	responsible for the decline of ¹⁵ N enrichment in the downslope-flow water. As discussed above
12	("Short-term dynamics"), immobilization would remove both ¹⁴ N and ¹⁵ N proportionally,
13	whereas dissimilation/export process would preferentially release ¹⁴ N. During snowmelt,
14	dilution by incoming N at natural-abundance levels may have also contributed to the reduced ¹⁵ N
15	enrichment of the dowslope-flow water.
16	Nitrogen fixation is unlikely to be very important in the decline of ¹⁵ N enrichment in
17	downslope-flow water, for the reasons discussed above ("Long-term dynamics"). Furthermore,
18	the laboratory experiments of Hobara et al. (2006) suggest that fixation would be higher later in

20 are higher during soilment, this would be inconsistent with the longer 95 % depletion distance

the year, during soilmelt not snowmelt. If N fixation is important to ¹⁵N enrichment and the rates

21 $(D_{0.95})$ during soilmelt than snowmelt (Table 6).

19

Based on the total ¹⁵N recovered within the plot, the spatial and temporal variations of
 D_{0.95} and of total ¹⁵N released into downslope-flow water, and differences in flow rates among

topolocations and dates, the primary factors that determine leaching losses of added ¹⁵N are: the 1 magnitude of total ¹⁵N released into downslope-flow water, N-immobilization capacity of the 2 site, and flow rate of downslope-flow water. During snowmelt, mosses and detritus in the Green 3 Laver may serve as both source and sink for dissolved ¹⁵N, because at that time downslope-flow 4 water flows through the Green Laver over frozen soil. Little loss of ¹⁵N from Riparian and two 5 NWT sites despite high ¹⁵N release into downslope-flow water (Figure 8) are possible because of 6 7 the strong immobilization capacity of the Green Layer. In contrast, the long $D_{0.95}$ (Figure 7 and 8 10) observed during soilmelt suggests the lack of strong N sinks or slower dissimilation/export 9 processes during this season than other seasons, or both. Downslope-flow water during soilmelt lacks full contact with the Green Layer, because the water flows below it within the upper soil, 10 11 yet the depth of thaw is still shallow. Furthermore, the soilmelt period may correspond to 12 transition from microbial-based N retention to plant-based retention (by root uptake). Brooks et 13 al. (1998) found that in the alpine soils of Colorado, USA, the microbial biomass-N pool peaked 14 during the early stages of snowmelt, and declined rapidly during the later melt season. Similarly, 15 by year-round monitoring of alpine tundra soils for changes in soil-N pools as well as microbial biomass and activity, Lipson and Monson (1998) concluded that N was mostly immobilized in 16 microbial biomass in early spring, whereas the plants were a stronger sink for N during the 17 growing season. These asynchronies between the timing of N released into dissolved-N pool and 18 19 the ability of the plants to take up N may contribute to the N limitation of plant production 20 (Shaver et al. 1992). By characterizing DON of northern European boreal streams Stepanauskas et al. (2000) found that up to 55 % of DON leached from the terrestrial system during the spring 21 22 flood was labile DON (urea and hydrolysable amino acids), which can be taken up directly by 23 some plants (Neff et al. 2003), whereas only ≤ 28 % was labile at post-spring baseflow. These

studies combined with our results suggest that terrestrial N in arctic and boreal regions may be
 susceptible to loss via leaching during spring melt.

Slow flow rate allows more time for ¹⁵N in the water to be immobilized, leading to little loss 3 of added ¹⁵N. The small $D_{0.95}$ for Riparian can be explained partly by a slower downslope-flow 4 5 water because of the smaller topographic gradient at this site. Newbold et al. (1982) showed in 6 their conceptual model that flow rate and flux of stream water was one of the factors that 7 determine nutrient spiral length in stream ecosystems. In a simulation study, Rastetter et al. 8 (2004) found that N movement on hillslopes was very slow (over 98 % of added N taken up in 9 2–5 m), their estimated rate being equivalent to $D_{0.95} < 2-5$ m. However, their simulations included only DIN, which was taken up rapidly by microbes and plants and was a minor 10 11 component of total dissolved N in downslope-flow water (Table 3). Our longer transport 12 distances $(D_{0.95})$ are probably due to inclusion of DON in our sampling. Although Rastetter et al. (2004) used annual averages and did not account for the large transport during snow and soilmelt 13 14 periods, they did find that transport distances increased with the rate of water flowing downslope 15 in agreement with our findings.

16

Conclusion & Implications

Most ¹⁵NH₄⁺ added to the surface of tundra was retained tightly in the Green Layer at all
sites. High ¹⁵N retention was due to the high immobilization in mosses and to direct
immobilization into plant detritus. Once it reached the soil beneath the Green layer, ¹⁵N was
incorporated quickly into less labile pools that are unavailable for uptake by vascular plants. The
Green Layer serves as the point of entry for most N inputs to this hillslope, as it efficiently
captures atmospherically-deposited NH₄⁺ and it is the primary location of N fixation (0-3 cm,
Hobara et al. 2006). However, N cycling within the Green Layer is distinct from that of the soil

1 beneath it, differing in both the forms and timing of N turnover, uptake, and immobilization. 2 The N cycles in Green Layer and in the soil beneath it are connected by vertical transport of dissolved N in infiltrating water only upon significant rain events during growing season. 3 4 However, limited precipitation (~ 20 cm) during the growing season likely constrains the 5 connection between the two N cycles and may contribute further to the N limitation in this 6 system. The N-release from the Green Layer (and from the system as a whole) occurs during 7 snowmelt when the most soil is still frozen and thus uptake by vascular plants is negligible. This asynchrony may lead to losses of dissolved N during late spring melt (soilmelt), contributing 8 9 significantly to persistent N limitation in this arctic tundra ecosystem. The N cycle in this arctic landscape may be greatly changed by the climatic warming that 10 11 has occurred in the Alaskan Arctic over the last several decades (Serreze et al., 2000), and is 12 expected to continue. In a warmer climate, dissimilation of recalcitrant N in the soil would be faster and more complete (i.e., the end products would be DIN and smaller organic compounds), 13 resulting in higher N availability in the soil. Warmer climate has also extended the length of 14 15 snow-free season in Alaska (Stone et al. 2002). This extended snow-free season and resulting deeper depth of thaw would allow more frequent vertical infiltration of water (because more 16 precipitation events would be rain rather than snow), and may result in a greater flux of relatively 17 18 labile N from the Green Layer to soil. The increased abundance of deciduous shrub species in 19 non-shrub tundras in recent decades (Sturm et al. 2001) may be one of the best indications of increased N availability in the soil as shrubs respond strongly to fertilizer addition (Chapin et al. 20 1995). A longer snow-free season and higher summer temperature would also create more 21 favorable conditions for wildfires, heretofore rare events North of the Brooks Range (Racine and 22 23 Jandt, *unpublished manuscript*). Fire may remove the functionally unique Green Layer and

dramatically alter N dynamics as well as surface microclimate and energy and C balance. 1 Understanding the impacts of these expected changes in N dynamics and N availability in arctic 2 tundra landscapes on global biogeochemical cycling remains a significant challenges for future 3 4 research. 5 **ACKNOWLEDGEMENTS** 6 We thank Brad Dewey, Bill Holmes, John Pastor, and Don Zak for analyses on CFN, SEDN, Nres, and part of DIN; Marshall Otter for isotope analyses; Donnie Bret-Hart, Christie 7 8 Haupert, George Kling, Jim Laundre, Carrie McCalley, Erica Stevie and numerous fellow 9 scientists, RA's, and students supported by NSF REU program for field and laboratory help. We thank three anonymous reviewers for helpful comments on the manuscript. Funding was 10 11 provided by NSF grant #0444592. Additional support was provided by Toolik Field Station 12 Long Term Ecological Research program, funded by National Science Foundation, Office of 13 Polar Programs.

1	LITERATURE CITED
2	Aerts, R., J. T. A. Verhoeven, and D. F. Whigham. 1999. Plant-Mediated Controls on Nutrient
3	Cycling in Temperate Fens and Bogs. Ecology 80: 2170-2181.
4	Alexander-Ozinskas, M. O. 2008. Denitrification contributes to nitrogen loss in fertilized arctic
5	tundra sites. MS thesis. Brown University.
6	Brookes, P. C., A. Landman, G. Pruden, and D. S. Jenkinson. 1985. Soil Biology and
7	Biochemistry. Chloroform fumigation and the release of soil nitrogen: a rapid direct
8	extraction method to measure microbial biomass nitrogen in soil 17: 837-842.
9	Brooks, P. D., J. M. Stark, B. B. McInteer, and T. Preston. 1989. Diffusion method to prepare
10	soil extracts for automated nitrogen-15 analysis. Soil Science Society of America Journal
11	53 : 1707-1711.
12	Brooks, P. D., M. W. Williams, and S. K. Schmidt. 1998. Inorganic nitrogen and microbial
13	biomass dynamics before and during spring snowmelt. Biogeochemistry 43: 1-15.
14	Cabrera, M. L., and M. H. Beare. 1993. Alkaline persulfate oxidation for determining total
15	nitrogen in microbial biomass extracts. Soil Science Society of America Journal 57:
16	1007-1012.
17	Chapin III, F.S., N. Fetcher, K. Kielland, K. Everett, and A. E. Linkins. 1988. Productivity and
18	niturient cycling of Alaskan tundra: enhancement by flowing soil water. Ecology 69:
19	693-702.
20	Chapin F. S., G. R. Shaver, A. E. Giblin, K. J. Nadelhoffer, J. A. Laundre. 1995. Responses of
21	arctic tundra to experimental and observed changes in climate. Ecology 73: 694–711.

1	Clemmensen, K.E., Sorensen, P.L., Michelsen, A., Jonasson, S. and Ström, L. 2008. Site-
2	dependent N uptake from N-form mixtures by arctic plants, soil microbes and
3	ectomycorrhizal fungi. Oecologia 155: 771–783.
4	Clymo, R. S. 1963. Ion exchange in Sphagnum and its relation to bog ecology. Annals of Botany
5	27 : 309-324.
6	Currie, W. S., K. J. Nadelhoffer, and J. D. Aber. 1999. Soil detrital processes controlling the
7	movement of ¹⁵ N tracers to forest vegetation. Ecological Applications 9 : 87-102.
8	Dijkstra, P, Ishizu A, Doucett RR, Hart SC, Schwartz E, Menyailo OV and Hungate BA 2006.
9	13C and 15N natural abundances of soil microbial biomass. Soil Biol Biochem 38:3257-
10	3266.
11	Dijkstra P, LaViolette CM, Coyle JS, Doucett RR, Schwartz E, Hart SC and Hungate BA 2008.
12	15N enrichment as an integrator of the effects of C and N on microbial metabolism and
13	ecosystem function. Ecological Letters 11: 389-397.
14	Eckstein, R. L. 2000. Nitrogen retention by Hylocomium splendens in a subarctic birch
15	woodland. Journal of Ecology 88: 506-515.
16	Everett, K. R., D. L. Kane, and L. D. Hinzman. 1996. Surface water chemistry and hydrology of
17	a small arctic drainage basin. Pages 185-201 in J. F. Reynolds and J. D. Tenhunen,
18	editors. Landscape function and disturbance in arctic tundra, Ecological Studies 120.
19	Springer-Verlag, Berlin Germany.
20	Everett, K. R., G. M. Marion, and D. L. Kane. 1989. Seasonal geochemistry of an arctic tundra
21	drainage basin. Holarctic Ecology 12: 279-289.
22	Friedel, J. K., and E. Scheller. 2002. Composition of hydrolysable amino acids in soil organic
23	matter and soil microbial biomass. Soil Biology and Biochemistry 34: 315-325.

1	Giblin, A. E., K. J. Nadelhoffer, G. R. Shaver, J. A. Laundre, A. J. McKerrow. 1991.
2	Biogeochemical diversity along a riverside toposequensce in arctic Alaska. Ecological
3	Monographs 61 : 415-435.
4	Hahn, S. C., S. F. Oberbauer, R. Geraier, N. E. Grulke, O. L. Lange, and J. D. Tenhunen. 1996.
5	Vegetation structure and aboveground carbon and nutrient pools in the Imnavait Creek
6	watershed. Pages 109-128 in J. F. Reynolds and J. D. Tenhunen, editors. Landscape
7	function and disturbance in arctic tundra, Ecological Studies 120. Springer-Verlag,
8	Berlin Germany.
9	Hastings, S. J., S. A. Luchessa, W. C. Oechel, and J. D. Tenhunen. 1989. Standing biomass and
10	production in water drainages of the foothills of the Philip Smith Moutains, Alaska.
11	Holarctic Ecology 12: 304-311.
12	Hinzman, L. D., D. L. Kane, C. S. Benson, and K. R. Everett. 1996. Energy balance and
13	hydrological processes in an arctic watershed. Pages 131-154 in J. F. Reynolds and J. D.
14	Tenhunen, editors. Landscape function and disturbance in arctic tundra, Ecological
15	Studies 120. Springer-Verlag, Berlin Germany.
16	Hobara, S., C. McCalley, K. Koba, A. E. Giblin, and G. R. Shaver. 2006. Nitrogen fixation in an
17	arctic tundra watershed: a key atmospheric N source. Arctic, Antarctic, and Alpine
18	Research 38 : 363–372.
19	Jonasson, S., A. Michelsen, and I. K. Schmidt. 1999. Coupling of nutrient cycling and carbon
20	dynamics in the arctic, integration of soil microbial and plant processes. Applied Soil
21	Ecology 11 : 135-146.

1	Kawahigashi, M., K. Kaiser, K. Kalbitz, A. Rodionov, and G. Guggenberger G. 2004. Dissolved
2	organic matter in small streams along a gradient from discontinuous to continuous
3	permafrost. Global Change Biology 10: 1576-1586.
4	Kerley, S. J., and J. D. Read. 1997. The Biology of Mycorrhiza in the Ericaceae. XIX. Fungal
5	Mycelium as a Nitrogen Source for the Ericoid Mycorrhizal Fungus Hymenoscyphus
6	ericae and Its Host Plants. New Phytologist 136: 691-701.
7	Knicker, H. 2004. Stabilization of N-compounds in soil and organic-matter-rich sediments - what
8	is the difference? Marine Chemistry 92: 167-195.
9	Knicker, H., H. D. Ludemann, and K. Haider. 1997. Incorporation studies of NH_4^+ during
10	incubation of organic residues by ¹⁵ N-CPMAS-NMR-spectroscopy. European Journal of
11	Soil Science 48 : 431-441.
12	Kotanen, P. M. 2002. Fates of added nitrogen in freshwater arctic wetlands grazed by snow
13	geese: the role of mosses. Arctic Antarctic and Alpine Research 34: 219-255.
14	Kramer, M. G., P. Sollins, R. S. Sletten, and P. K. Swart. 2003. N isotope fractionation and
15	measures of organic matter alteration during decomposition. Ecology 84: 2021-2025.
16	Lajtha K, Jarrell WM, Johnson DW, Sollins P. 1999. Collection of Soil Solution. Pages 166-82
17	in Robergtson et al editors. Standard Soil Methods for Long-Term Ecological Research. New
18	York: Oxford University Press.
19	Li, Y., and D. H. Vitt. 1997. Patterns of retention and utilization of aerially deposited nitrogen in
20	boreal peatlands. Ecoscience 4: 106-116.
21	Lipson, D. A., and R. K. Monson. 1998. Plant-microbe competition for soil amino acids in the
22	alpine tundra: effects of freeze-thaw and dry-rewet events. Oecologia 113: 406-414.

1	Marion, G. M., P. C. Miller, and C. H. Black. 1987. Competition for tracer ¹⁵ N in tussock tundra
2	ecosystems. Holarctic Ecology 10: 230-234.
3	Mulvaney, R. L., and S. A. Khan. 2001. Diffusion methods to determine different forms of
4	nitrogen in soil hydrolysates. Soil Science Society of America Journal 65: 1284-1292.
5	Myrold, D.D. (1998) Transformations of Nitrogen. Pages 259-294 in Principles and Applications
6	of Soil Micobiology. Sylvia et al editors. Prentice-Hall, Upper Saddle River, NJ, USA.
7	Nadelhoffer, K.J., M. R. Downs, and B. Fry B. 1999. Sinks for ¹⁵ N-enriched additions to an oak
8	forest and a red pine plantation. Ecological Applications 9: 72-86.
9	Nadelhoffer, K. J., A. E. Giblin, G. R. Shaver, and J. A. Laundre. 1991. Effects of temperature
10	and substrate quality on element mineralization in six arctic soils. Ecology 72: 242-253.
11	Neff, J. C., F. S. Chapin III, and P. M. Vitousek. 2003. Breakes in the cycle: dissolved organic
12	nitrogen in terrestrial ecosystems. Frontires in Ecology and the Environment 1: 205-211.
13	Newbold, J. D., R. V. O'Neill, J. W. Elwood, and W. van Winkle. 1982. Nutrients spiralling in
14	streams: implications for nutrient limitation and invertebrate activity. The American
15	Naturalist 120 : 628-652.
16	Nordin, A., I. K. Schmidt, and G. R. Shaver. 2004. Nitrogen uptake by arctic soil microbes and
17	plants in relation to soil nitrogen supply. Ecology 85: 955-962.
18	Perakis, S. S., and L. O. Hedin. 2001. Fluxes and fates of nitrogen in soil of an unpolluted old-
19	growth temperate forest, southern chile. Ecology 82: 2245-2260.
20	Perakis, S. S., and L. O. Hedin. 2002. Nitrogen loss from unpolluted South American forests
21	mainly via dissolved organic compounds. Nature 415 : 416-419.
22	Press, M. C., and J. A. Lee. 1982. Nitrate reductase activity of Sphagnum species in the South
23	Pennines. New Phytologist 92: 487-494.

1	Rastetter, E. B., S. S. Perakis, G. R. Shaver, and G. I. Ågren. 2005. Terrestrial C sequestration at
2	elevated CO2 and temperature: the role of dissolved organic N loss. Ecological
3	Applications 15: 71-86.
4	Rastetter, E.B, B. L. Kwiatkowski, and S. Le Dizes, and J. E. Hobbie. 2004. The role of down-
5	slope water and nutrient fluxes in the response of Arctic hill slopes to climate change.
6	Biogeochemistry 69:37-62.
7	Reynolds, J. F. and J. D. Tenhunen (1996) Ecosystem response, resistance, resilience, and
8	recovery in arctic landscapes: introduction. Pages 3-18 in Landscape function and
9	disturbance in arctic tundra. Reynolds, J. F. and Tenhunen, J. D. editors. Springer, Berlin
10	Heidelberg.
11	Schimel, J. P., and F. S. Chapin III. 1996. Tundra plant uptake of amino acid and NH_4^+ nitrogen
12	in situ: plants compete well for amino acid N. Ecology 77: 2142-2147.
13	Schmidt, I. K., S. Jonasson, G. R. Shaver, A. Michelsen, and A. Nordin. 2002. Mineralization
14	and distribution of nutrients in plants and microbes in four arctic ecosystems: responses
15	to warming. Plant and Soil 242: 93-106.
16	Serreze, M. C., J. E. Walsh, F. S. Chapin, III, T. Osterkamp, M. Dyurgerov, V. Romanovsky, W.
17	C. Oechel, J. Morison, T. Zhang, and R. G. Barry. 2000. Observational evidence of
18	recent change in the northern high latitude environment, Climate Change 46: 159–207.
19	Shaver, G. R., W. D. Billings, F. S. Chapin III, A. E. Giblin, K. J. Nadelhoffer, W. C. Oechel,
20	and E. B. Rastetter. 1992. Global change and the carbon balance of arctic ecosystmes.
21	BioScience 42 : 433-441.

Λ	2
4	4

1	Shaver, G. S., S. M. Bret-Harte, M. H. Jones, J. Johnstone, L. Gough, J. Laundre, F. S. Chapin.
2	2001. Species compositoin interacts with fertilizer to control long-term change in tundra
3	productivity. Ecology 82 : 3163-3181.
4	Shaver, G. S., and F. S. Chapin III. 1991. Production/biomass relationships and element cycling
5	in contrasting arctic vegetation types. Ecological Monographs 61: 1-31.
6	Sigman, D. M., M. A. Altabet, R. Michener, D. C. McCorkle, B. Fry, and R. M. Holmes. 1997.
7	Natural abundance-level measurement of the nitrogen isotopic composition of oceanic
8	nitrate: an adaptation of the ammonia diffusion method. Marine Chemistry 57: 277-242.
9	Solozano, L., and J. H. Sharp. 1980. Determination of Total Dissolved Nitrogen in Natural
10	Waters 25 : 751-754.
11	Stepanauskas, R., H. Laudon, and N. O. G. Jørgensen. 2000. High DON bioavailability in boreal
12	streams during a spring flood. Limnology and Oceanography 45: 1289-1307.
13	Stone, R. S., E. G. Dutton, J. M. Harris, and D. Longnecker. 2002. Earlier spring snowmelt in
14	northern Alaska as an indicator of climate change. Journal of Geophysical Research.
15	107(D10), 4089
16	Sturm, M., C. Racine, and K. Tape. 2001. Increasing shrub abundance in the Arctic. Nature 411:
17	546–547.
18	SYSTAT. 2004. Version 11.0. SYSTAT Software, Inc.
19	Thorn, K. A., and M. A. Mikita. 1992. Ammonia fixation by humic substances: a nitrogen-15
20	and carbon-13 NMR study. The Science of the Total Environment 113: 67-87.
21	Turetsky, M. R. 2003. The Bryologist. The role of bryophytes in carbon and nitrogen cycling
22	106 : 395-409.

1	Vitousek, P. M., L. O. Hedin, P. A. Matson, J. H. Fownes, and J. Neff. 1998. Within-system
2	element cycles, input-output budgets, and nutrient limitation. Pages 432-451 in Pace M.
3	L., and Groffman P. M. editors. Successes, Limitations, and Frontiers in Ecosystem
4	Science. Springer-Verlag, New York, New york, USA.
5	Walker, D. A., and M. D. Walker. 1996. Terrain and vegetation of the Imnavait Creek watershed.
6	Pages 73-108 in J. F. Reynolds and J. D. Tenhunen, editors. Landscape function and
7	disturbance in arctic tundra, Ecological Studies 120. Springer-Verlag, Berlin Germany.
8	Weintraub, M. N., and J. P. Schimel. 2005. The seasonal dynamics of amino acids and other
9	nutrients in Alaskan Arctic tundra soils. Biogeochemistry 73:359-380.
10	Zang, X., J. D. H. van Heemst, K. J. Dria, and P. G. Hatcher. 2000. Encapsulation of protein in
11	humic acid from a histosol as an explanation for the occurrence of organic nitrogen in
12	soil and sediment. Organic Geochemistry 31: 679-695.
13	Zhang, X., W. Amelung, Y. Yuan, S. Samson-Liebig, L. Brown L, and W. Zech. 1999. Land-use
14	effects on amino sugars in particle size fractions of an Argiudoll. Applied Soil Ecology
15	11 : 271-275.
16	