195 research outputs found
Tightly Coupled Array Antennas for Ultra-Wideband Wireless Systems
Tightly coupled array (TCA) antenna has become a hot topic of research recently, due to its
potential of enabling one single antenna array to operate over an extremely wide frequency range. Such an
array antenna is promising for applications in numerous wideband/multi-band and multi-function wireless
systems such as wideband high-resolution radars, 5G mobile communications, satellite communications,
global navigation satellite systems, sensors, wireless power transmission, internet of things and so on. Many
papers on this topic have been published by researchers internationally. This paper provides a detailed
review of the recent development on TCA that utilizes the capacitive coupling. The basic principles and the
historical evolution of the TCAs are introduced firstly. Then, recent development in the analysis and design
of TCAs, such as equivalent circuit analysis, bandwidth limitation analysis, array elements, feed structures,
substrates/superstrates loading, etc., are explained and discussed. The performances of the state-of-the-art
TCAs are presented and a comparison amongst some TCAs reported recently is summarized and discussed.
To illustrate the practical designs of TCA, one case study is provided, and the detailed design procedures of
the TCA are explained so as to demonstrate the TCA design methodology. Simulated results including the
VSWR at different angles of scanning, patterns and antenna gain are shown and discussed. A conclusion
and future work are given in the end
Study of Bs-> \phi l^+ l^-$ Decay in a Single Universal Extra Dimension
Utilizing form factors calculated within the light-cone sum rules, we have
evaluated the decay branching ratios of and in a single universal extra dimension model (UED), which is
viewed as one of the alternative theories beyond the standard model (SM). For
the decay , the dilepton invariant mass spectra, the
forward-backward asymmetry, and double lepton polarization are also calculated.
For each case, we compared the obtained results with predictions of the SM. In
lower values of the compactification factor 1/R, the only parameter in this
model, we see the considerable discrepancy between the UED and SM models.
However, when 1/R increases, the results of UED tend to diminish and at , two models have approximately the same predictions.
Compared with data from CDF of , the 1/R tends to be
larger than . We also note that the zero crossing point of
the forward-backward asymmetry is become smaller, which will be an important
plat to prob the contribution from the extra dimension model. The results
obtained in this work will be very useful in searching new physics beyond SM.
Moreover, the order of magnitude for branching ratios shows a possibility to
study these channels at the Large Hadron Collider (LHC), CDF and the future
super-B factory.Comment: 13 pages, 16 figure
B_c meson rare decays in the light-cone quark model
We investigate the rare decays
and in the framework of the
light-cone quark model (LCQM). The transition form factors are calculated in
the space-like region and then analytically continued to the time-like region
via exponential parametrization. The branching ratios and longitudinal lepton
polarization asymmetries (LPAs) for the two decays are given and compared with
each other. The results are helpful to investigating the structure of
meson and to testing the unitarity of CKM quark mixing matrix. All these
results can be tested in the future experiments at the LHC.Comment: 9 pages, 11 figures, version accepted for publication in EPJ
Analysis of B_s->\phi \ell^+ \ell^- decay with new physics effects
The rare B_s-> \phi \ell^+ \ell^- decay is investigated by using the most
general model independent effective Hamiltonian for . The
calculated Br(B_s \rar \phi \mu^+ \mu^-) = 1.92 \times 10^{-6} is in
consistent with the experimental upper bound. The dependencies of the branching
ratios and polarization asymmetries of leptons and combined lepton-antilepton
asymmetries on the new Wilson coefficients are presented. The analysis shows
that the branching ratios and the lepton polarization asymmetries are very
sensitive to the scalar and tensor type interactions. The results obtained in
this work will be very useful in searching new physics beyond the standard
model.Comment: 28 pages, 14 figure
Charm multiplicity and the branching ratios of inclusive charmless b quark decays in the general two-Higgs-doublet models
In the framework of general two-Higgs-doublet models, we calculate the
branching ratios of various inclusive charmless b decays by using the low
energy effective Hamiltonian including next-to-leading order QCD corrections,
and examine the current status and the new physics effects on the determination
of the charm multiplicity and semileptonic branching ratio .
Within the considered parameter space, the enhancement to the ratio due to the charged-Higgs penguins can be as large as a factor of 8 (3) in
the model III (II), while the ratio can be increased from
the standard model prediction of 2.49% to 4.91% (2.99%) in the model III (II).
Consequently, the value of and can be decreased simultaneously
in the model III. The central value of will be lowered slightly by
about 0.003, but the ratio can be reduced significantly from the
theoretical prediction of in the SM to , for GeV, respectively. We find that
the predicted and the measured now agree within roughly one
standard deviation after taking into account the effects of gluonic charged
Higgs penguins in the model III with a relatively light charged Higgs boson.Comment: 25 pages, Latex file, axodraw.sty, 6 figures. Final version to be
published in Phys.Rev.
Charmless hadronic decays and new physics effects in the general two-Higgs doublet models
Based on the low-energy effective Hamiltonian with the generalized
factorization, we calculate the new physics contributions to the branching
ratios of the two-body charmless hadronic decays of and mesons
induced by the new gluonic and electroweak charged-Higgs penguin diagrams in
the general two-Higgs doublet models (models I, II and III). Within the
considered parameter space, we find that: (a) the new physics effects from new
gluonic penguin diagrams strongly dominate over those from the new -
and - penguin diagrams; (b) in models I and II, new physics contributions
to most studied B meson decay channels are rather small in size: from -15% to
20%; (c) in model III, however, the new physics enhancements to the
penguin-dominated decay modes can be significant, , and
therefore are measurable in forthcoming high precision B experiments; (d) the
new physics enhancements to ratios {\cal B}(B \to K \etap) are significant in
model III, , and hence provide a simple and plausible new
physics interpretation for the observed unexpectedly large B \to K \etap
decay rates; (e) the theoretical predictions for and
in model III are still consistent with the data
within errors; (f) the significant new physics enhancements to the
branching ratios of and decays are helpful to improve the
agreement between the data and the theoretical predictions; (g) the theoretical
predictions of in the 2HDM's are generally
consistent with experimental measurements and upper limits ()Comment: 55 pages, Latex file, 17 PS and EPS figures. With minor corrections,
final version to be published in Phys.Rev. D. Repot-no: PKU-TH-2000-4
B^0-\bar{B}^0 mixing and B \to X_s \gamma decay in the third type 2HDM: effects of NLO QCD contributions
In this paper, we calculated the next-to-leading order (NLO) new physics
contributions to the mass splitting \dmd and the branching ratio \brbxsga
induced by the charged Higgs loop diagrams in the third type of
two-Higgs-doublet models (model III) and draw the constraints on the free
parameters of model III. For the model III under consideration, we found that
(a) an upper limit |\ltt|\leq 1.7 is obtained from the precision data of
\dmd=0.502 \pm 0.007 ps^{-1}, while |\ltt| \approx 0.5 is favored
phenomenologicaly; (b) for decay, the NLO QCD contributions
tend to cancel the LO new physics contributions; (c) a light charged Higgs
boson with a mass around or even less than 200 GeV is still allowed at NLO
level by the measured branching ratio \brbxsga: numerically, 188 \leq \mh
\leq 215 GeV for (|\ltt|,|\lbb|)=(0.5,18); (d) the NLO QCD contributions
tend to cancel the LO contributions effectively, the lower limit on \mh is
consequently decreased by about 200 GeV; (e) the allowed region of \mh will
be shifted toward heavy mass end for a non-zero relative phase between
the Yukawa couplings \ltt and \lbb. The numerical results for the
conventional model II are also presented for the sake of a comparison.Comment: 42 pages, 18 eps figures, Revtex, new references adde
Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at âs = 13 TeV with the ATLAS detector
This paper describes a measurement of the inclusive top quark pair production cross-section (ÏttÂŻ) with a data sample of 3.2 fbâ1 of protonâproton collisions at a centre-of-mass energy of âs = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electronâmuon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously ÏttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be:
ÏttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb,
where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented
The performance of the jet trigger for the ATLAS detector during 2011 data taking
The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided protonâproton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleonânucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction
- âŠ