271 research outputs found

    Probabilistic Evaluation of 3D Surfaces Using Statistical Shape Models (SSM)

    Full text link
    [EN] Inspecting a 3D object which shape has elastic manufacturing tolerances in order to find defects is a challenging and time-consuming task. This task usually involves humans, either in the specification stage followed by some automatic measurements, or in other points along the process. Even when a detailed inspection is performed, the measurements are limited to a few dimensions instead of a complete examination of the object. In this work, a probabilistic method to evaluate 3D surfaces is presented. This algorithm relies on a training stage to learn the shape of the object building a statistical shape model. Making use of this model, any inspected object can be evaluated obtaining a probability that the whole object or any of its dimensions are compatible with the model, thus allowing to easily find defective objects. Results in simulated and real environments are presented and compared to two different alternatives.This work was partially funded by Generalitat Valenciana through IVACE (Valencian Institute of Business Competitiveness) distributed nominatively to Valencian technological innovation centres under project expedient IMAMCN/2020/1.Pérez, J.; Guardiola Garcia, JL.; Pérez Jiménez, AJ.; Perez-Cortes, J. (2020). Probabilistic Evaluation of 3D Surfaces Using Statistical Shape Models (SSM). Sensors. 20(22):1-16. https://doi.org/10.3390/s20226554S1162022Brosed, F. J., Aguilar, J. J., Guillomía, D., & Santolaria, J. (2010). 3D Geometrical Inspection of Complex Geometry Parts Using a Novel Laser Triangulation Sensor and a Robot. Sensors, 11(1), 90-110. doi:10.3390/s110100090Perez-Cortes, J.-C., Perez, A., Saez-Barona, S., Guardiola, J.-L., & Salvador, I. (2018). A System for In-Line 3D Inspection without Hidden Surfaces. Sensors, 18(9), 2993. doi:10.3390/s18092993Bi, Z. M., & Wang, L. (2010). Advances in 3D data acquisition and processing for industrial applications. Robotics and Computer-Integrated Manufacturing, 26(5), 403-413. doi:10.1016/j.rcim.2010.03.003Fu, K., Peng, J., He, Q., & Zhang, H. (2020). Single image 3D object reconstruction based on deep learning: A review. Multimedia Tools and Applications, 80(1), 463-498. doi:10.1007/s11042-020-09722-8Pichat, J., Iglesias, J. E., Yousry, T., Ourselin, S., & Modat, M. (2018). A Survey of Methods for 3D Histology Reconstruction. Medical Image Analysis, 46, 73-105. doi:10.1016/j.media.2018.02.004Pathak, V. K., Singh, A. K., Sivadasan, M., & Singh, N. K. (2016). Framework for Automated GD&T Inspection Using 3D Scanner. Journal of The Institution of Engineers (India): Series C, 99(2), 197-205. doi:10.1007/s40032-016-0337-7Bustos, B., Keim, D. A., Saupe, D., Schreck, T., & Vranić, D. V. (2005). Feature-based similarity search in 3D object databases. ACM Computing Surveys, 37(4), 345-387. doi:10.1145/1118890.1118893Mian, A., Bennamoun, M., & Owens, R. (2009). On the Repeatability and Quality of Keypoints for Local Feature-based 3D Object Retrieval from Cluttered Scenes. International Journal of Computer Vision, 89(2-3), 348-361. doi:10.1007/s11263-009-0296-zLiu, Z., Zhao, C., Wu, X., & Chen, W. (2017). An Effective 3D Shape Descriptor for Object Recognition with RGB-D Sensors. Sensors, 17(3), 451. doi:10.3390/s17030451Barra, V., & Biasotti, S. (2013). 3D shape retrieval using Kernels on Extended Reeb Graphs. Pattern Recognition, 46(11), 2985-2999. doi:10.1016/j.patcog.2013.03.019Xie, J., Dai, G., Zhu, F., Wong, E. K., & Fang, Y. (2017). DeepShape: Deep-Learned Shape Descriptor for 3D Shape Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(7), 1335-1345. doi:10.1109/tpami.2016.2596722Lague, D., Brodu, N., & Leroux, J. (2013). Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS Journal of Photogrammetry and Remote Sensing, 82, 10-26. doi:10.1016/j.isprsjprs.2013.04.009Cook, K. L. (2017). An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology, 278, 195-208. doi:10.1016/j.geomorph.2016.11.009Martínez-Carricondo, P., Agüera-Vega, F., Carvajal-Ramírez, F., Mesas-Carrascosa, F.-J., García-Ferrer, A., & Pérez-Porras, F.-J. (2018). Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. International Journal of Applied Earth Observation and Geoinformation, 72, 1-10. doi:10.1016/j.jag.2018.05.015Burdziakowski, P., Specht, C., Dabrowski, P. S., Specht, M., Lewicka, O., & Makar, A. (2020). Using UAV Photogrammetry to Analyse Changes in the Coastal Zone Based on the Sopot Tombolo (Salient) Measurement Project. Sensors, 20(14), 4000. doi:10.3390/s20144000MARDIA, K. V., & DRYDEN, I. L. (1989). The statistical analysis of shape data. Biometrika, 76(2), 271-281. doi:10.1093/biomet/76.2.271Heimann, T., & Meinzer, H.-P. (2009). Statistical shape models for 3D medical image segmentation: A review. Medical Image Analysis, 13(4), 543-563. doi:10.1016/j.media.2009.05.004Ambellan, F., Tack, A., Ehlke, M., & Zachow, S. (2019). Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative. Medical Image Analysis, 52, 109-118. doi:10.1016/j.media.2018.11.009Avendi, M. R., Kheradvar, A., & Jafarkhani, H. (2016). A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Medical Image Analysis, 30, 108-119. doi:10.1016/j.media.2016.01.005Booth, J., Roussos, A., Ponniah, A., Dunaway, D., & Zafeiriou, S. (2017). Large Scale 3D Morphable Models. International Journal of Computer Vision, 126(2-4), 233-254. doi:10.1007/s11263-017-1009-7Erus, G., Zacharaki, E. I., & Davatzikos, C. (2014). Individualized statistical learning from medical image databases: Application to identification of brain lesions. Medical Image Analysis, 18(3), 542-554. doi:10.1016/j.media.2014.02.00

    Alignment and Improvement of Shape-From-Silhouette Reconstructed 3D Objects

    Get PDF
    [EN] 3D object alignment is essential in multiple fields. For instance, to allow precise measurements in metrology, to perform surface/volumetric checks or quality control in industrial inspection, to align partial captures of a 3D object during object scanning, to simplify object recognition or classification in pattern recognition, accuracy and speed, being opposed, are desirable features of those algorithms. Nevertheless, they can be more or less critical depending on the application area. In the present work, we propose a methodology to improve the alignment of 3D objects reconstructed using shape-from-silhouette techniques. This reconstruction technique produces objects with small synthetic bulges, making them more difficult to align accurately. On the one hand, prealignment and branch-and-bound techniques are used to improve the convergence and speed of the alignment algorithms. On the other hand, a method to obtain a precise alignment even in the presence of bulges is presented. Finally, a refinement of the shape-from-silhouettes technique is shown. This technique uses multiple captures to refine object reconstruction and reduce or eliminate, among other improvements, synthetic bulges.This work was supported in part by European Union Horizon Europe Programme Artificial Intelligence Driven Industrial Equipment Product Life Cycle Boosting Agility, Sustainability and Resilience (AIDEAS) under Grant 101057294; and in part by the Generalitat Valenciana through Instituto Valenciano de Competitividad Empresarial [Valencian Institute of Business Competitiveness (IVACE)] Distributed Nominatively to Valencian Technological Innovation Centres under Project IMAMCA/2023/11.Pérez Jiménez, AJ.; Perez-Soler, J.; Perez-Cortes, J.; Guardiola Garcia, JL. (2024). Alignment and Improvement of Shape-From-Silhouette Reconstructed 3D Objects. IEEE Access. 12:76975-76985. https://doi.org/10.1109/ACCESS.2024.340734176975769851

    A System for In-Line 3D Inspection without Hidden Surfaces

    Full text link
    [EN] This work presents a 3D scanner able to reconstruct a complete object without occlusions, including its surface appearance. The technique presents a number of differences in relation to current scanners: it does not require mechanical handling like robot arms or spinning plates, it is free of occlusions since the scanned part is not resting on any surface and, unlike stereo-based methods, the object does not need to have visual singularities on its surface. This system, among other applications, allows its integration in production lines that require the inspection of a large volume of parts or products, especially if there is an important variability of the objects to be inspected, since there is no mechanical manipulation. The scanner consists of a variable number of industrial quality cameras conveniently distributed so that they can capture all the surfaces of the object without any blind spot. The object is dropped through the common visual field of all the cameras, so no surface or tool occludes the views that are captured simultaneously when the part is in the center of the visible volume. A carving procedure that uses the silhouettes segmented from each image gives rise to a volumetric representation and, by means of isosurface generation techniques, to a 3D model. These techniques have certain limitations on the reconstruction of object regions with particular geometric configurations. Estimating the inherent maximum error in each area is important to bound the precision of the reconstruction. A number of experiments are presented reporting the differences between ideal and reconstructed objects in the system.This work was partially funded by Generalitat Valenciana through I+D IVACE (Valencian Institute of Business Competitiveness) and FEDER (European Regional Developement Fund) supports under project IMDEEA/2018/115.Perez-Cortes, J.; Pérez Jiménez, AJ.; Sáez Barona, S.; Guardiola Garcia, JL.; Salvador Igual, I. (2018). A System for In-Line 3D Inspection without Hidden Surfaces. Sensors. 18(9):1-25. https://doi.org/10.3390/s18092993S12518

    Overview of recent TJ-II stellarator results

    Get PDF
    The main results obtained in the TJ-II stellarator in the last two years are reported. The most important topics investigated have been modelling and validation of impurity transport, validation of gyrokinetic simulations, turbulence characterisation, effect of magnetic configuration on transport, fuelling with pellet injection, fast particles and liquid metal plasma facing components. As regards impurity transport research, a number of working lines exploring several recently discovered effects have been developed: the effect of tangential drifts on stellarator neoclassical transport, the impurity flux driven by electric fields tangent to magnetic surfaces and attempts of experimental validation with Doppler reflectometry of the variation of the radial electric field on the flux surface. Concerning gyrokinetic simulations, two validation activities have been performed, the comparison with measurements of zonal flow relaxation in pellet-induced fast transients and the comparison with experimental poloidal variation of fluctuations amplitude. The impact of radial electric fields on turbulence spreading in the edge and scrape-off layer has been also experimentally characterized using a 2D Langmuir probe array. Another remarkable piece of work has been the investigation of the radial propagation of small temperature perturbations using transfer entropy. Research on the physics and modelling of plasma core fuelling with pellet and tracer-encapsulated solid-pellet injection has produced also relevant results. Neutral beam injection driven Alfvénic activity and its possible control by electron cyclotron current drive has been examined as well in TJ-II. Finally, recent results on alternative plasma facing components based on liquid metals are also presentedThis work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under Grant Agreement No. 633053. It has been partially funded by the Ministerio de Ciencia, Inovación y Universidades of Spain under projects ENE2013-48109-P, ENE2015-70142-P and FIS2017-88892-P. It has also received funds from the Spanish Government via mobility grant PRX17/00425. The authors thankfully acknowledge the computer resources at MareNostrum and the technical support provided by the Barcelona S.C. It has been supported as well by The Science and Technology Center in Ukraine (STCU), Project P-507F

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Forward-central two-particle correlations in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 2GeV/c. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B. V.Peer reviewe

    Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at root(NN)-N-S=2.76 TeV

    Get PDF
    Peer reviewe

    Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial

    Get PDF
    Background: Short-term treatment for people with type 2 diabetes using a low dose of the selective endothelin A receptor antagonist atrasentan reduces albuminuria without causing significant sodium retention. We report the long-term effects of treatment with atrasentan on major renal outcomes. Methods: We did this double-blind, randomised, placebo-controlled trial at 689 sites in 41 countries. We enrolled adults aged 18–85 years with type 2 diabetes, estimated glomerular filtration rate (eGFR)25–75 mL/min per 1·73 m 2 of body surface area, and a urine albumin-to-creatinine ratio (UACR)of 300–5000 mg/g who had received maximum labelled or tolerated renin–angiotensin system inhibition for at least 4 weeks. Participants were given atrasentan 0·75 mg orally daily during an enrichment period before random group assignment. Those with a UACR decrease of at least 30% with no substantial fluid retention during the enrichment period (responders)were included in the double-blind treatment period. Responders were randomly assigned to receive either atrasentan 0·75 mg orally daily or placebo. All patients and investigators were masked to treatment assignment. The primary endpoint was a composite of doubling of serum creatinine (sustained for ≥30 days)or end-stage kidney disease (eGFR <15 mL/min per 1·73 m 2 sustained for ≥90 days, chronic dialysis for ≥90 days, kidney transplantation, or death from kidney failure)in the intention-to-treat population of all responders. Safety was assessed in all patients who received at least one dose of their assigned study treatment. The study is registered with ClinicalTrials.gov, number NCT01858532. Findings: Between May 17, 2013, and July 13, 2017, 11 087 patients were screened; 5117 entered the enrichment period, and 4711 completed the enrichment period. Of these, 2648 patients were responders and were randomly assigned to the atrasentan group (n=1325)or placebo group (n=1323). Median follow-up was 2·2 years (IQR 1·4–2·9). 79 (6·0%)of 1325 patients in the atrasentan group and 105 (7·9%)of 1323 in the placebo group had a primary composite renal endpoint event (hazard ratio [HR]0·65 [95% CI 0·49–0·88]; p=0·0047). Fluid retention and anaemia adverse events, which have been previously attributed to endothelin receptor antagonists, were more frequent in the atrasentan group than in the placebo group. Hospital admission for heart failure occurred in 47 (3·5%)of 1325 patients in the atrasentan group and 34 (2·6%)of 1323 patients in the placebo group (HR 1·33 [95% CI 0·85–2·07]; p=0·208). 58 (4·4%)patients in the atrasentan group and 52 (3·9%)in the placebo group died (HR 1·09 [95% CI 0·75–1·59]; p=0·65). Interpretation: Atrasentan reduced the risk of renal events in patients with diabetes and chronic kidney disease who were selected to optimise efficacy and safety. These data support a potential role for selective endothelin receptor antagonists in protecting renal function in patients with type 2 diabetes at high risk of developing end-stage kidney disease. Funding: AbbVie
    corecore