69 research outputs found

    Validation of MODIS derived aerosol optical depth over Western India

    Get PDF
    MODIS (Moderate Resolution Imaging Spectroradiometer) derived aerosol optical depths (AODs) were compared against the ground based observations from Microtops sunphotometer over Ahmedabad (72.5°E, 23.03°N) in Western India. The region is semiarid and poses challenge for the satellite remote sensing of aerosols. Besides comparing the ground truth with the Collection Version 4 of MODIS aerosol product, the paper reports the first ever validation of the updated Collection Version 5 of the MODIS aerosol product over India. The AOD data from Aqua platform is averaged over 0.5° × 0.5° centered at Ahmedabad and compared with the sunphotometer observation taken within half an hour to the satellite overpass time. The Version 4 data comparison showed a large scatter. Further, the comparison for 470 nm and 660 nm behave differently over different years. Overall, the comparison shows considerable improvement in the Collection Version 5 aerosol product. Among seasons, Pre-Monsoon (April to May) has the best correlation and Dry season (December to March) the least. The updated product has scope for further improvement as the correlations are less than unity, and the extent of underestimation for 470 nm is more during Dry and Post-Monsoon seasons whereas that for 660 nm is more during Pre-Monsoon and Monsoon seasons which are dominated by fine and coarse particles respectively. The results show a better surface reflectance parameterization by the MODIS Collection Version 5 algorithm as compared to Version 4 but the aerosol model used in the retrieval algorithm is still not adequate

    Variation in chemical composition and volatility of oxygenated organic aerosol in different rural, urban, and mountain environments

    Get PDF
    The apparent volatility of atmospheric organic aerosol (OA) particles is determined by their chemical composition and environmental conditions (e.g., ambient temperature). A quantitative, experimental assessment of volatility and the respective importance of these two factors remains challenging, especially in ambient measurements. We present molecular composition and volatility of oxygenated OA (OOA) particles in different rural, urban, and mountain environments (including Chacaltaya, Bolivia; Alabama, US; Hyytiälä, Finland; Stuttgart and Karlsruhe, Germany; and Delhi, India) based on deployments of a filter inlet for gases and aerosols coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (FIGAERO-CIMS). We find on average larger carbon numbers (nC) and lower oxygen-to-carbon (O : C) ratios at the urban sites (nC: 9.8 ± 0.7; O : C: 0.76 ± 0.03; average ±1 standard deviation) compared to the rural (nC: 8.8 ± 0.6; O : C: 0.80 ± 0.05) and mountain stations (nC: 8.1 ± 0.8; O : C: 0.91 ± 0.07), indicative of different emission sources and chemistry

    Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative Forcing

    Full text link
    The new Energy Exascale Earth System Model Version 1 (E3SMv1) developed for the U.S. Department of Energy has significant new treatments of aerosols and lightâ absorbing snow impurities as well as their interactions with clouds and radiation. This study describes seven sets of new aerosolâ related treatments (involving emissions, new particle formation, aerosol transport, wet scavenging and resuspension, and snow radiative transfer) and examines how they affect global aerosols and radiative forcing in E3SMv1. Altogether, they give a reduced total aerosol radiative forcing (â 1.6 W/m2) and sensitivity in cloud liquid water to aerosols, but an increased sensitivity in cloud droplet size to aerosols. A new approach for H2SO4 production and loss largely reduces a low bias in small particles concentrations and leads to substantial increases in cloud condensation nuclei concentrations and cloud radiative cooling. Emitting secondary organic aerosol precursor gases from elevated sources increases the column burden of secondary organic aerosol, contributing substantially to global clearâ sky aerosol radiative cooling (â 0.15 out of â 0.5 W/m2). A new treatment of aerosol resuspension from evaporating precipitation, developed to remedy two shortcomings of the original treatment, produces a modest reduction in aerosols and cloud droplets; its impact depends strongly on the model physics and is much stronger in E3SM Version 0. New treatments of the mixing state and optical properties of snow impurities and snow grains introduce a positive presentâ day shortwave radiative forcing (0.26 W/m2), but changes in aerosol transport and wet removal processes also affect the concentration and radiative forcing of lightâ absorbing impurities in snow/ice.Plain Language SummaryAerosol and aerosolâ cloud interactions continue to be a major uncertainty in Earth system models, impeding their ability to reproduce the observed historical warming and to project changes in global climate and water cycle. The U.S. DOE Energy Exascale Earth System Model version 1 (E3SMv1), a stateâ ofâ theâ science Earth system model, was developed to use exascale computing to address the grand challenge of actionable predictions of variability and change in the Earth system critical to the energy sector. It has been publicly released with new treatments in many aspects, including substantial modifications to the physical treatments of aerosols in the atmosphere and lightâ absorbing impurities in snow/ice, aimed at reducing some known biases or correcting model deficiencies in representing aerosols, their life cycle, and their impacts in various components of the Earth system. Compared to its predecessors (without the new treatments) and observations, E3SMv1 shows improvements in characterizing global distributions of aerosols and their radiative effects. We conduct sensitivity experiments to understand the impact of individual changes and provide guidance for future development of E3SM and other Earth system models.Key PointsA description and assessment of new aerosol treatments in the Energy Exascale Earth System Model Version 1 (E3SMv1) is providedContributions to the total aerosolâ related radiative forcing by individual new treatments and different processes are quantifiedSome of the new treatments are found to depend on model physics and require further improvement for E3SM or other Earth system modelsPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153241/1/jame21034-sup-0001-Figure_SI-S01.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153241/2/jame21034.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153241/3/jame21034_am.pd

    Highly time-resolved chemical speciation and source apportionment of organic aerosol components in Delhi, India, using extractive electrospray ionization mass spectrometry

    Get PDF
    In recent years, the Indian capital city of Delhi has been impacted by very high levels of air pollution, especially during winter. Comprehensive knowledge of the composition and sources of the organic aerosol (OA), which constitutes a substantial fraction of total particulate mass (PM) in Delhi, is central to formulating effective public health policies. Previous source apportionment studies in Delhi identified key sources of primary OA (POA) and showed that secondary OA (SOA) played a major role but were unable to resolve specific SOA sources. We address the latter through the first field deployment of an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) in Delhi, together with a high-resolution aerosol mass spectrometer (AMS). Measurements were conducted during the winter of 2018/19, and positive matrix factorization (PMF) was used separately on AMS and EESI-TOF datasets to apportion the sources of OA. AMS PMF analysis yielded three primary and two secondary factors which were attributed to hydrocarbon-like OA (HOA), biomass burning OA (BBOA-1 and BBOA-2), more oxidized oxygenated OA (MO-OOA), and less oxidized oxygenated OA (LO-OOA). On average, 40 % of the total OA mass was apportioned to the secondary factors. The SOA contribution to total OA mass varied greatly between the daytime (76.8 %, 10:00–16:00 local time (LT)) and nighttime (31.0 %, 21:00–04:00 LT). The higher chemical resolution of EESI-TOF data allowed identification of individual SOA sources. The EESI-TOF PMF analysis in total yielded six factors, two of which were primary factors (primary biomass burning and cooking-related OA). The remaining four factors were predominantly of secondary origin: aromatic SOA, biogenic SOA, aged biomass burning SOA, and mixed urban SOA. Due to the uncertainties in the EESI-TOF ion sensitivities, mass concentrations of EESI-TOF SOA-dominated factors were related to the total AMS SOA (i.e. MO-OOA + LO-OOA) by multiple linear regression (MLR). Aromatic SOA was the major SOA component during the daytime, with a 55.2 % contribution to total SOA mass (42.4 % contribution to total OA). Its contribution to total SOA, however, decreased to 25.4 % (7.9 % of total OA) during the nighttime. This factor was attributed to the oxidation of light aromatic compounds emitted mostly from traffic. Biogenic SOA accounted for 18.4 % of total SOA mass (14.2 % of total OA) during the daytime and 36.1 % of total SOA mass (11.2 % of total OA) during the nighttime. Aged biomass burning and mixed urban SOA accounted for 15.2 % and 11.0 % of total SOA mass (11.7 % and 8.5 % of total OA mass), respectively, during the daytime and 15.4 % and 22.9 % of total SOA mass (4.8 % and 7.1 % of total OA mass), respectively, during the nighttime. A simple dilution–partitioning model was applied on all EESI-TOF factors to estimate the fraction of observed daytime concentrations resulting from local photochemical production (SOA) or emissions (POA). Aromatic SOA, aged biomass burning, and mixed urban SOA were all found to be dominated by local photochemical production, likely from the oxidation of locally emitted volatile organic compounds (VOCs). In contrast, biogenic SOA was related to the oxidation of diffuse regional emissions of isoprene and monoterpenes. The findings of this study show that in Delhi, the nighttime high concentrations are caused by POA emissions led by traffic and biomass burning and the daytime OA is dominated by SOA, with aromatic SOA accounting for the largest fraction. Because aromatic SOA is possibly more toxic than biogenic SOA and primary OA, its dominance during the daytime suggests an increased OA toxicity and health-related consequences for the general public.</p

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF
    corecore