25 research outputs found

    Willage: A Two-Tiered Peer-to-Peer Resource Sharing Platform for Wireless Mesh Community Networks

    Get PDF
    The success of experiences such as Seattle and Houston Wireless has attracted the attention on the so called wireless mesh community networks. These are wireless multihop networks spontaneously deployed by users willing to share communication resources. Due to the community spirit characterizing such networks, it is likely that users will be willing to share other resources besides communication resources, such as data, images, music, movies, disk quotas for distributed backup, and so on. In other words, it is expected that peer-to-peer applications will be deployed in such type of networks. In this paper we propose Willage, a platform for resource localization in wireless mesh community networks with mobile users. The platform is based on a two-tiered architecture: resources are made available at the lower tier, which is composed of mobile terminals, whereas information on their localization is managed at the upper layer, which is composed of wireless mesh routers. We also introduce Georoy, an algorithm for the efficient retrieval of the information on resource localization based on the Viceroy algorithm. Simulation results show that Willage achieves its goal of enabling efficient and scalable peer-to-peer resource sharing in wireless mesh community networks

    A radiochemistry laboratory exercise: determination of uranium in tap water by solvent extraction and liquid scintillation counting

    Get PDF
    Environmental radiochemistry is a key pillar of the education of nuclear engineering students and young professionals. Teaching the fundamentals of this multidisciplinary field is best performed also through well-designed hands-on experiments. A simple and fast radiochemical procedure has been developed to determine uranium in tap water by liquid scintillation counting. The proposed method provides reliable and repeatable results, with accuracy and precision within 5%. It can be proficiently executed by undergraduate students, who have appreciated the engagement and got acquainted with standard analysis protocols, from sample collection and manipulation to radiometric measure and data analysis

    Insights into the Complexation Mechanism of a Promising Lipophilic PyTri Ligand for Actinide Partitioning from Spent Nuclear Fuel

    Get PDF
    The challenging issue of spent nuclear fuel (SNF) management is being tackled by developing advanced technologies that point to reduce environmental footprint, long-term radiotoxicity, volumes and residual heat of the final waste, and to increase the proliferation resistance. The advanced recycling strategy provides several promising processes for a safer reprocessing of SNF. Advanced hydrometallurgical processes can extract minor actinides directly from Plutonium and Uranium Reduction Extraction raffinate by using selective hydrophilic and lipophilic ligands. This research is focused on a recently developed N-heterocyclic selective lipophilic ligand for actinides separation to be exploited in advanced Selective ActiNide EXtraction (SANEX)- like processes: 2,6-bis(1-(2-ethylhexyl)-1H-1,2,3-triazol-4-yl)pyridine (PyTri-Ethyl-Hexyl-PTEH). The formation and stability of metal−ligand complexes have been investigated by different techniques. Preliminary studies carried out by electrospray ionization mass spectrometry (ESI−MS) analysis enabled to qualitatively explore the PTEH complexes with La(III) and Eu(III) ions as representatives of lanthanides. Time-resolved laser fluorescence spectroscopy (TRLFS) experiments have been carried out to determine the ligand stability constants with Cm(III) and Eu(III) and to better investigate the ligand complexes involved in the extraction process. The contribution of a 1:3 M/L complex, barely identified by ESI−MS analyses, was confirmed as the dominant species by TRLFS experiments. To shed light on ligand selectivity toward actinides over lanthanides, NMR investigations have been performed on PTEH complexes with Lu(III) and Am(III) ions, thereby showing significant differences in chemical shifts of the coordinating nitrogen atoms providing proof of a different bond nature between actinides and lanthanides. These scientific achievements encourage consideration of this PyTri ligand for a potential large-scale implementation

    Pre-impregnation approach to encapsulate radioactive liquid organic waste in geopolymer

    Get PDF
    The pre-disposal management of Radioactive Liquid Organic Waste (RLOW) is hampered by its challenging physico-chemical properties. In this work, a straightforward conditioning option based on RLOW impregnation on absorbing materials and followed by encapsulation in a stable geopolymeric matrix is proposed, avoiding onerous pre-treatments and the use of surfactants. Recycled materials have been investigated as adsorbent and geopolymer precursors to foster process sustainability. Relevant properties have been studied to ascertain the waste acceptance criteria accomplishment: materials compatibility, RLOW loading factor and bleeding, microstructure, compressive strength, leaching and thermal stability. This approach is promising, although some criticalities remain unsolved

    Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder

    Get PDF
    Autism spectrum disorders (ASD) are a group of genetic disorders often overlapping with other neurological conditions. We previously described abnormalities in the branched-chain amino acid (BCAA) catabolic pathway as a cause of ASD. Here, we show that the solute carrier transporter 7a5 (SLC7A5), a large neutral amino acid transporter localized at the blood brain barrier (BBB), has an essential role in maintaining normal levels of brain BCAAs. In mice, deletion of Slc7a5 from the endothelial cells of the BBB leads to atypical brain amino acid profile, abnormal mRNA translation, and severe neurological abnormalities. Furthermore, we identified several patients with autistic traits and motor delay carrying deleterious homozygous mutations in the SLC7A5 gene. Finally, we demonstrate that BCAA intracerebroventricular administration ameliorates abnormal behaviors in adult mutant mice. Our data elucidate a neurological syndrome defined by SLC7A5 mutations and support an essential role for the BCAA in human brain function

    Covid-19 and the role of smoking: the protocol of the multicentric prospective study COSMO-IT (COvid19 and SMOking in ITaly).

    Get PDF
    The emergency caused by Covid-19 pandemic raised interest in studying lifestyles and comorbidities as important determinants of poor Covid-19 prognosis. Data on tobacco smoking, alcohol consumption and obesity are still limited, while no data are available on the role of e-cigarettes and heated tobacco products (HTP). To clarify the role of tobacco smoking and other lifestyle habits on COVID-19 severity and progression, we designed a longitudinal observational study titled COvid19 and SMOking in ITaly (COSMO-IT). About 30 Italian hospitals in North, Centre and South of Italy joined the study. Its main aims are: 1) to quantify the role of tobacco smoking and smoking cessation on the severity and progression of COVID-19 in hospitalized patients; 2) to compare smoking prevalence and severity of the disease in relation to smoking in hospitalized COVID-19 patients versus patients treated at home; 3) to quantify the association between other lifestyle factors, such as e-cigarette and HTP use, alcohol and obesity and the risk of unfavourable COVID-19 outcomes. Socio-demographic, lifestyle and medical history information will be gathered for around 3000 hospitalized and 700-1000 home-isolated, laboratory-confirmed, COVID-19 patients. Given the current absence of a vaccine against SARS-COV-2 and the lack of a specific treatment for -COVID-19, prevention strategies are of extreme importance. This project, designed to highly contribute to the international scientific debate on the role of avoidable lifestyle habits on COVID-19 severity, will provide valuable epidemiological data in order to support important recommendations to prevent COVID-19 incidence, progression and mortality

    Gaia Early Data Release 3: Structure and properties of the Magellanic Clouds

    Get PDF
    We compare the Gaia DR2 and Gaia EDR3 performances in the study of the Magellanic Clouds and show the clear improvements in precision and accuracy in the new release. We also show that the systematics still present in the data make the determination of the 3D geometry of the LMC a difficult endeavour; this is at the very limit of the usefulness of the Gaia EDR3 astrometry, but it may become feasible with the use of additional external data. We derive radial and tangential velocity maps and global profiles for the LMC for the several subsamples we defined. To our knowledge, this is the first time that the two planar components of the ordered and random motions are derived for multiple stellar evolutionary phases in a galactic disc outside the Milky Way, showing the differences between younger and older phases. We also analyse the spatial structure and motions in the central region, the bar, and the disc, providing new insights into features and kinematics. Finally, we show that the Gaia EDR3 data allows clearly resolving the Magellanic Bridge, and we trace the density and velocity flow of the stars from the SMC towards the LMC not only globally, but also separately for young and evolved populations. This allows us to confirm an evolved population in the Bridge that is slightly shift from the younger population. Additionally, we were able to study the outskirts of both Magellanic Clouds, in which we detected some well-known features and indications of new ones

    The Gaia mission

    Get PDF
    Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page. http://www.cosmos.esa.int/gai
    corecore