24 research outputs found

    Biomechanics, obesity, and osteoarthritis. The role of adipokines: When the levee breaks

    Get PDF
    Osteoarthritis is a high-incidence painful and debilitating disease characterized by progressive degeneration of articular joints, which indicates a breakdown in joint homeostasis favoring catabolic processes. Biomechanical loading, associated with inflammatory and metabolic imbalances of joint, strongly contributes to the initiation and progression of the disease. Obesity is a primary risk factor for disease onset, and mechanical factors increased the risk for disease progression. Moreover, inflammatory mediators, in particular, adipose tissue-derived cytokines (better known as adipokines) play a critical role linking obesity and osteoarthritis. The present article summarizes the knowledge about the role of adipokines in cartilage and bone function, highlighting their contribution to the imbalance of joint homeostasis and, consequently, pathogenesis of osteoarthritis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:594-604, 2018

    The nicotinamide phosphoribosyltransferase: a molecular link between metabolism, inflammation, and cancer.

    No full text
    Beyond its well-described role in cellular metabolism, intracellular nicotinamide adenine dinucleotide (NAD) levels have been shown to affect the enzymatic activity of a series of NAD-dependent enzymes, influencing biological responses such as cell survival and inflammation. Nicotinamide phosphoribosyl transferase activity has been shown to be essential for maintaining adequate intracellular NAD levels, suggesting that this enzyme may in fact play a central role in modulating the activity of a wide range of NAD-dependent enzymes. Several recent observations concur with this hypothesis and suggest that by regulating NAD availability, Nampt is able to control both cell viability and the inflammatory response. Nampt may thus represent a novel pharmacological target with valuable anti-inflammatory and antitumor properties.Journal ArticleResearch Support, Non-U.S. Gov'tReviewinfo:eu-repo/semantics/publishe

    Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner.

    Get PDF
    Tumor necrosis factor (TNF) synthesis is known to play a major part in numerous inflammatory disorders, and multiple transcriptional and post-transcriptional regulatory mechanisms have therefore evolved to dampen the production of this key proinflammatory cytokine. The high expression of nicotinamide phosphoribosyltransferase (Nampt), an enzyme involved in the nicotinamide-dependent NAD biosynthetic pathway, in cells of the immune system has led us to examine the potential relationship between NAD metabolism and inflammation. We show here that intracellular NAD concentration promotes TNF synthesis by activated immune cells. Using a positive screen, we have identified Sirt6, a member of the sirtuin family, as the NAD-dependent enzyme able to regulate TNF production by acting at a post-transcriptional step. These studies reveal a previously undescribed relationship between metabolism and the inflammatory response and identify Sirt6 and the nicotinamide-dependent NAD biosynthetic pathway as novel candidates for immunointervention in an inflammatory setting.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    corecore