632 research outputs found

    Dynamical tunneling in molecules: Quantum routes to energy flow

    Full text link
    Dynamical tunneling, introduced in the molecular context, is more than two decades old and refers to phenomena that are classically forbidden but allowed by quantum mechanics. On the other hand the phenomenon of intramolecular vibrational energy redistribution (IVR) has occupied a central place in the field of chemical physics for a much longer period of time. Although the two phenomena seem to be unrelated several studies indicate that dynamical tunneling, in terms of its mechanism and timescales, can have important implications for IVR. Examples include the observation of local mode doublets, clustering of rotational energy levels, and extremely narrow vibrational features in high resolution molecular spectra. Both the phenomena are strongly influenced by the nature of the underlying classical phase space. This work reviews the current state of understanding of dynamical tunneling from the phase space perspective and the consequences for intramolecular vibrational energy flow in polyatomic molecules.Comment: 37 pages and 23 figures (low resolution); Int. Rev. Phys. Chem. (Review to appear in Oct. 2007

    Neurospora from natural populations: Population genomics insights into the Life history of a model microbial Eukaryote

    Get PDF
    The ascomycete filamentous fungus Neurospora crassa played a historic role in experimental biology and became a model system for genetic research. Stimulated by a systematic effort to collect wild strains initiated by Stanford geneticist David Perkins, the genus Neurospora has also become a basic model for the study of evolutionary processes, speciation, and population biology. In this chapter, we will first trace the history that brought Neurospora into the era of population genomics. We will then cover the major contributions of population genomic investigations using Neurospora to our understanding of microbial biogeography and speciation, and review recent work using population genomics and genome-wide association mapping that illustrates the unique potential of Neurospora as a model for identifying the genetic basis of (potentially adaptive) phenotypes in filamentous fungi. The advent of population genomics has contributed to firmly establish Neurospora as a complete model system and we hope our review will entice biologists to include Neurospora in their research

    A high confidence, manually validated human blood plasma protein reference set

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The immense diagnostic potential of human plasma has prompted great interest and effort in cataloging its contents, exemplified by the Human Proteome Organization (HUPO) Plasma Proteome Project (PPP) pilot project. Due to challenges in obtaining a reliable blood plasma protein list, HUPO later re-analysed their own original dataset with a more stringent statistical treatment that resulted in a much reduced list of high confidence (at least 95%) proteins compared with their original findings. In order to facilitate the discovery of novel biomarkers in the future and to realize the full diagnostic potential of blood plasma, we feel that there is still a need for an ultra-high confidence reference list (at least 99% confidence) of blood plasma proteins.</p> <p>Methods</p> <p>To address the complexity and dynamic protein concentration range of the plasma proteome, we employed a linear ion-trap-Fourier transform (LTQ-FT) and a linear ion trap-Orbitrap (LTQ-Orbitrap) for mass spectrometry (MS) analysis. Both instruments allow the measurement of peptide masses in the low ppm range. Furthermore, we employed a statistical score that allows database peptide identification searching using the products of two consecutive stages of tandem mass spectrometry (MS3). The combination of MS3 with very high mass accuracy in the parent peptide allows peptide identification with orders of magnitude more confidence than that typically achieved.</p> <p>Results</p> <p>Herein we established a high confidence set of 697 blood plasma proteins and achieved a high 'average sequence coverage' of more than 14 peptides per protein and a median of 6 peptides per protein. All proteins annotated as belonging to the immunoglobulin family as well as all hypothetical proteins whose peptides completely matched immunoglobulin sequences were excluded from this protein list. We also compared the results of using two high-end MS instruments as well as the use of various peptide and protein separation approaches. Furthermore, we characterized the plasma proteins using cellular localization information, as well as comparing our list of proteins to data from other sources, including the HUPO PPP dataset.</p> <p>Conclusion</p> <p>Superior instrumentation combined with rigorous validation criteria gave rise to a set of 697 plasma proteins in which we have very high confidence, demonstrated by an exceptionally low false peptide identification rate of 0.29%.</p

    How did the latest increase in fees in England affect student enrolment and inequality?

    Get PDF
    This paper presents a first analysis of the increase of undergraduate tuition fees to £9,000 (€11.000) in English higher education in 2012. I use a semi-experimental research design to estimate the effect of the reforms, based on student enrolment data drawn from the Higher Education Statistics Agency (HESA). Taking into account possible anticipation effects of the fee increase, I find that enrolment declined by 15 % in the treated groups as a result of the tuition fee increase. This number is almost three times higher than what previous studies have found, and may represent a serious long term cost for the English economy. The decline in enrolments is particularly pronounced for students in older age groups and students from the service class and the middle class. No effect is visible for students from the working class, indicating that the reforms did not lead to a much-feared increase in class bias in higher education enrolment. The reforms also seem not to have exacerbated ethnic inequality in higher education, as all ethnic groups were negatively affected by the reforms. These results are consistent with earlier research in the United States and the United Kingdom, although they expand our understanding of student price responsiveness in other important ways. The paper argues that younger and older students face different costs and benefits. Older students may be less certain about their benefits, and therefore be more sensitive towards price increases. The strong decrease in mature learners may require a policy response, taking into account these differing incentives

    A Glucose Fuel Cell for Implantable Brain–Machine Interfaces

    Get PDF
    We have developed an implantable fuel cell that generates power through glucose oxidation, producing steady-state power and up to peak power. The fuel cell is manufactured using a novel approach, employing semiconductor fabrication techniques, and is therefore well suited for manufacture together with integrated circuits on a single silicon wafer. Thus, it can help enable implantable microelectronic systems with long-lifetime power sources that harvest energy from their surrounds. The fuel reactions are mediated by robust, solid state catalysts. Glucose is oxidized at the nanostructured surface of an activated platinum anode. Oxygen is reduced to water at the surface of a self-assembled network of single-walled carbon nanotubes, embedded in a Nafion film that forms the cathode and is exposed to the biological environment. The catalytic electrodes are separated by a Nafion membrane. The availability of fuel cell reactants, oxygen and glucose, only as a mixture in the physiologic environment, has traditionally posed a design challenge: Net current production requires oxidation and reduction to occur separately and selectively at the anode and cathode, respectively, to prevent electrochemical short circuits. Our fuel cell is configured in a half-open geometry that shields the anode while exposing the cathode, resulting in an oxygen gradient that strongly favors oxygen reduction at the cathode. Glucose reaches the shielded anode by diffusing through the nanotube mesh, which does not catalyze glucose oxidation, and the Nafion layers, which are permeable to small neutral and cationic species. We demonstrate computationally that the natural recirculation of cerebrospinal fluid around the human brain theoretically permits glucose energy harvesting at a rate on the order of at least 1 mW with no adverse physiologic effects. Low-power brain–machine interfaces can thus potentially benefit from having their implanted units powered or recharged by glucose fuel cells

    Large-order NSPT for lattice gauge theories with fermions:the plaquette in massless QCD

    Get PDF
    Numerical Stochastic Perturbation Theory (NSPT) allows for perturbative computations in quantum field theory. We present an implementation of NSPT that yields results for high orders in the perturbative expansion of lattice gauge theories coupled to fermions. The zero-momentum mode is removed by imposing twisted boundary conditions; in turn, twisted boundary conditions require us to introduce a smell degree of freedom in order to include fermions in the fundamental representation. As a first application, we compute the critical mass of two flavours of Wilson fermions up to order O(β7)O(\beta^{-7}) in a SU(3){\mathrm{SU}}(3) gauge theory. We also implement, for the first time, staggered fermions in NSPT. The residual chiral symmetry of staggered fermions protects the theory from an additive mass renormalisation. We compute the perturbative expansion of the plaquette with two flavours of massless staggered fermions up to order O(β35)O(\beta^{-35}) in a SU(3){\mathrm{SU}}(3) gauge theory, and investigate the renormalon behaviour of such series. We are able to subtract the power divergence in the Operator Product Expansion (OPE) for the plaquette and estimate the gluon condensate in massless QCD. Our results confirm that NSPT provides a viable way to probe systematically the asymptotic behaviour of perturbative series in QCD and, eventually, gauge theories with fermions in higher representations.Comment: 49 pages, 28 figures. Revised version, to be published in EPJC. Some references added, typos corrected, and improved discussion on finite-volume effect

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations
    corecore